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Abstract
This document describes the design and functionality of the hardware components implemented in the
Field-programmable Port eXtender (FPX) to support the Washington University Network Services Platform
(NSP). This includes support for the Multi-Service Router (MSR) and Extreme Networking projects. The
functionality of each component is described along with supporting top-level entity diagrams, block dia-
grams, and interface timing diagrams. For more information on the NSP and related projects, see [1][2]. For
more information on the FPX, see [3][4][5][6][7].
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1 Oveview

The Network Services Platform (NSP) [1] project seeks to build an open-platform programmable router
for networking research. Building upon prior research, the NSP uses the Washington University Gigabit
Switch (WUGS) [8], an ATM switch configured with eight ports each supporting 2.5 Gb/s links, as the
core switching fabric. Exceptional and “active” packet processing is handled by the Smart Port Card (SPC)
[2], a port card containing an embedded microprocessor and custom network interface device. The Field-
programmable Port eXtender (FPX) [3][4] handles a majority of the “plain” packet processing and queuing
functionality. A logical block diagram of the NSP with FPX support is shown in Figure 1.
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Figure 1: overview,,sr Logical block diagram of the Network Services Platform (NSP) with FPX support.
Both input and output VCI mappings use a base plus offset scheme to provide for ease in configuration.

The NSP supports four virtual interfaces per port identified by a unique Virtual Circuit Identifier (VCI)
equal to an input base VCI (IBase_VCI) plus sub-port identifier (SPI). Packets are forwarded to the appro-
priate output port using a port-specific VCI equal to an output base VCI (OBase VCI) plus the port number
(PN). Packets requiring processing by the SPC are transmitted to and received from the SPC on one of
two VClIs (SPC_IN_VCI or SPC_EG_VCI). The need for distinct ingress (IN) and egress (EG) VCls will be
explained in Section 2.2.

A logical block diagram of the hardware components of the NSP is shown in Figure 2. Note that
both ingress and egress traffic share a single datapath. All traffic arrives at the Input Segmentation and
Reassembly (ISAR) block in the form of AALS5 encapsulated frames. The ISAR extracts the payload of the
ATM cells of the AALS frames, which includes the Internet and Transport protocol headers. Note that cells
of frames may become interleaved among the four virtual interface VCls, the eight switch port VCls, and
two SPC VCils; therefore, the ISAR must maintain a total of 14 reassembly contexts. For traffic arriving
from the four virtual interface VCls, the ISAR must insert an NSP Shim, an internal packet header used to
communicate information regarding packet handling throughout the NSP. The contents and functionality of
the shim are explained in Section 3.2. The ISAR buffers then writes fixed size chunks of arriving packets to
the Packet Storage Manager (PSM).

Once the entire packet has been received in the ISAR, the packet pointer, shim fields, and packet header
fields are forwarded to the Classification and Route Lookup (CARL) block for classification. Upon comple-
tion of a lookup, CARL updates the shim fields and, if necessary, makes copies of the packet header fields.
This will occur in the case of multicast packets or a non-exclusive filter match. Note that only one copy of
the packet is stored in SDRAM, while multiple copies of the packet header may exist.

The packet pointer, packet length, copy count, and shim fields are sent to the Queue Manager (QMGR).
Based on the shim fields, the Queue Manager decides which queue to place the packet on. The Queue
Manager schedules packet transmission according to parameters for each type of queue. Parameters range
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Figure 2: overviewylock Logical block diagram of the components in the Reprogrammable Application
Device (RAD) of the Field-programmable Port eXtender (FPX) for the Network Services Platform (NSP).



from packet length to rates distributed between ports in control cells received by the CCP.

The packet pointer, shim fields, and copy count of the next packet to be sent is forwarded to the OSAR.
The OSAR retrieves the packet from the PSM, creates an AALS frame, and transmits the cells of the frame
on either the RAD switch or line card interface. Note that cells of a frame cannot be distributed across the
two interfaces to prevent reordering. The OSAR must also remove NSP Shims from the header of packets
transmitted on one of the four virtual interfaces (LC). For packets with copy counts greater than one, the
PSM must keep track of how many copies of the packet have been sent.

Note that control cells are switched to the control path at the input of the ISAR and processed by the
Control Cell Processor (CCP). The CCP is responsible for managing the packet classification database,
register file, and queuing parameters. Response cells are switched into the datapath at the outputs of the
OSAR block.



2 Design Constraints

It is important to understand the constraints either imposed by the line rate or by the implemented FPX
board. These constraints are identified and reviewed in this section. The rest of the document describes the
functionality of the hardware components implemented in the Reprogrammable Application Device (RAD)
of the FPX in order to support the NSP.

2.1 Performance Constraints

The goal of this project is to support 1Gb/s links. With a 2x speedup in the switch fabric along with 200Mb/s
of traffic to and from the SPC, the total uni-directional bandwidth is 3.2Gb/s. Due to previous studies
performed on the Xilinx Virtex-E 2000 (xcv2000e-6), a target clock frequency of 75MHz was chosen.

The target link rate requires that total buffer 1/0 be 6.4Gb/s (approximately 15M packets per second)
to support this system. The combined raw throughput of the SDRAM interfaces of the RAD operating
at 75MHz is 9.6Gb/s. Therefore, the PSM must sustain an average efficiency of 67% on the SDRAM
interfaces. The raw throughput provided by the SRAM interface used by Queue Manager is 2.7Gb/s. This
allows an average of five (5) memory transactions per packet.

For classification, the General Filter Match and the Route Lookup blocks must only operate on traffic
arriving from the line card. Therefore, they must sustain a throughput of 1Gb/s (2.36M lookups per second).
However, the Exact Match classifier must operate on traffic arriving from the switch and the line card (we
assume that re-classification traffic from the SPC is negligable). Therefore, it must sustain a throughput of
3Gh/s (7M lookups per second). The Route Lookup and Exact Match classifier must share a single SRAM
interface with a raw bandwidth of 2.7Gb/s.

2.2 Physical Design Mapping

Due to the physical layout of the FPX board and subsequent pin-mappings on the RAD, the logical block
diagram requires a few changes in order to physically map to the RAD. The physical block diagram is shown
in Figure 3.

Note that the PSM is divided into two independent homogeneous blocks due to the location of the two
SDRAM interfaces. The physical split of the PSM prevents excessive capacitive loading and exhaustion of
long-line routing resources in the RAD. Likewise, the ISAR and OSAR will act as two pseudo-independent
blocks. The ISAR has independent input packet processing sub-blocks with associated PSM interfaces.
However, the sub-blocks are not completely independent as the ISAR must multiplex packet headers for
transmission on the single interface to CARL. Similarly, OSAR has independent output packet processing
sub-blocks with associated PSM interfaces. However, OSAR must de-multiplex packet headers arriving
from the Queue Manager to the correct sub-block and switch output packets to the correct NID/RAD inter-
face for transmission to the switch or line card. This final switching step is necessary to prevent interleving
cells of different packets bound for the same destination.

The CCP receives control cells from the ISAR and transmits response cells to the OSAR. The CCP
maintains a global register file, the routing table for CARL in SRAM, as well as handling the distributed
rate control information for the Queue Manager. All RAD control cells are handled by the CCP.
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Figure 3: overviewylock,hy Block diagram of the components in the Reprogrammable Application Device
(RAD) of the Field-programmable Port eXtender (FPX) for the Network Services Platform (NSP) depicting
the physical mapping constraints of the FPX board.



2.3 NID Interface

In order to route traffic to the RAD, the appropriate entries must be written to the Virtual Circuit Translation
Table (VCXT) of the Network Interface Device (NID) of the FPX. A diagram of the NID VCI routing is
shown in Figure 4; note that the specific value of the entries in the VCXT will depend on the configuration
of the NSP. Users should see [9] regarding the operation and programming of the NID.
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Figure 4: nid,ci,oute Virtual Circuit Identifier (VCI) routing in the Network Interface Device (NID) of the
Field-programmable Port eXtender (FPX) for the Network Services Platform (NSP).

The following constraints to NID were added during May 22, 2002 meeting.

e The NID status cell should allow reporting of the UP_LC_LINK signal from the line card. This is just
another bit that should appear in the NID status cell. Note that the NID currently reports UP_SW _NID
as always up to the switch. No change for this. We should check that UP_SW _NID reports that the
links is down during reset.

¢ \We need to assume that line cards do not have clean UP_LC_LINK signals. Whenever the UP_LC LINK
signal report that the link is down, a timer/state machine should ensure that no cells are sent or received
to/from the line card for 100ms on the SW_CLK (assuming 62.5 MHz).

Add link-enable state machine to NID. The state machines adds 100 ms delay after carrier present
before link is in UP state. Reset puts the state machine in link down state. NID should ignore cells
from the link if it is not in UP state.

e A new NID control cell should be added that allows a RAD _RESET to be issued via a control cell.
e Add maintenance register and control cells processing in NID so that switch can read link states.
e Control cell should be able to poll to check hardware status.

e NID assserts link-up signals to switch when NID is up (after NID) is ready to receive control cells).
Notes: NID does not initialize VXT table at reset. VXT table is only initialized after power up.

e NID verifies HEC value of all ATM cells bound to RAD, dropping errornous ones.

e NID needs to be able to forward one cell every 16 cycles per interface. This translate to 2.0Gbps.
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2.4 Programming of RAD

RAD needs to be programmed after SPC is up. If SPC is reloaded, RAD will be reprogrammed.

2.5 Reset and Initialization

RAD needs to have auto reset circuitry after it is programmed to force proper initialization

Every RAD submodule generates READY signal to ISAR after initialization. ISAR outputs nothing and
ignores incoming cells until all modules are ready. ISAR only sends READY signal to NID after all modules
are ready.

26 MTU

The MTU for NSP system is 2000 bytes. This is the largest IP packet, not including shim and AALS5 trailer,
being processed by FPX. IP packet larger than this will be discarded by ISAR.

11



3 Inter Component Communication

A limited communication mechanism among components and sub-components of the NSP is embedded with
the packet. The nature of this communication is forward looking; it is mainly used to carry additional infor-
mation relevant to the packet such as its location in the SDRAM, intermediate results of packet processing
performed, etc.

3.1 Flags

31 30 29 28 27 26 25 24

Flags §

‘DP‘RC‘NM EX ‘FM‘TO
Figure 5: msr,him slags Format of the shim Flags field.

The Flags field, as shown in Figure 5, is used for passing packet handling information between the FPX
and SPC. Note that the lower three flags (shaded in the figure) are FPX-specific state information which
must be retained with the packet and must not be modified by the SPC. The flags are defined as follows:

oDP (Drop Packet): This flag is set when a packet should be dropped due to failed checksums, mis-
matched length fields, filters, or SPC directives. Accordingly, this flag may be set by ISAR, CARL,
QMGR, or the SPC.

¢RC (Re-Classify packet): This flag is set by the SPC when a packet requires re-classification in the
FPX due to processing in the SPC.

«NM (No Match): This flag is set by CARL when no filter or lookup entry exists for the packet. The
packet is sent to the SPC for classification.

oEX (Exception packet): This flag is set by ISAR when IP Options exist in the packet header or the
packet is not IPv4. The packet is sent to the SPC for processing.

oFM (From LC/SW): This flag allows components to distinguish the source of the packet via a single
bit compare. 0 = From Switch, 1 = From Line Card. This flag is set by ISAR. The SPC must not
modify this flag.

oTO (To LC/SW): This flag allows components to distinguish the destination of the packet via a single
bit compare. 0 = To Switch, 1 = To Line Card. This flag is set following priority resolution by CARL.
The SPC must not modify this flag.

Inside the FPX, another set of flags is used for inter-module communication. As shown in Figure 6, the
Internal Flags are an 8-bit field passed between components. The Internal Flags are defined as follows:

o¢DG (Datagram packet): This flag is set by CARL when the only lookup result for the packet is a
route entry.

oSB (SPC-bound packet): This flag is set to 1 when the packet should be transmitted to the SPC. This
flag is set by ISAR and CARL for exception packets, no match, etc.

SR (SPC-return packet): This flag is set to 1 when the packet is returning from the SPC. This flag is
set by ISAR.

12
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Figure 6: msr him;ntslags Format of the Internal Flags field.

¢IC (Initial Copy): This flag is set to 1 by the CARL when it sends the first copy of any packet to
QMGR.

oFC (Final Copy): This flag is set to 1 by the CARL when it sends the last copy of any packet to
QMGR.

oSC (Single-Chunk packet): This flag is set to 1 when the entire packet resides in one chunk of
SDRAM. This flag is set by ISAR.

3.2 Shims

To pass packet handling information between functional blocks of the NSP, a custom header field, called a
shim, is used. The shim is added to packets arriving from the links and deleted from packets transmitted on
the link. The format of the InterPort Shim used to communicate between input and output ports is shown
in Figure 7. The InterPort shim contains the following fields: Input VIN (Virtual Interface Number) and
Output VIN (Virtual Interface Number).

The VIN (Virtual Interface Number) denotes the physical port and sub-port as shown in Figure 9. The
sub-port denotes one of four Virtual Circuit Identifiers (VCIs) used for transmission on the link. The Input
VIN is the physical port and sub-port at which the packet arrived from a line card. This field is stamped
by the ISAR upon packet arrival. The Output VIN is the output port and sub-port of the packet returned by
CARL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O

Input VIN | Output VIN
[ s A I O

Figure 7: msrinterportshim yormat Format of the InterPort Shim used to communicate between input
and output ports.

Note that presently there are no Flags defined for the InterPort shim, however we reserve the first octet
of InterPort Shim to be used for such purpose.

The format of the IntraPort Shim used to communication between processing components of a single
physical port (the SPC and the FPX) is shown in Figure 8. The IntraPort shim contains the following fields:
Flags, Input VIN (Virtual Interface Number), Output VIN (Virtual Interface Number), Queue ldentifier
(QID), Total Chunks (TTL Chunks), Queue Length, Packet Pointer, and Second Chunk Pointer.

13
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Flags § Input VIN | Output VIN Queue I dentifier (QID)
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Figure 8. msr;ntraport;him rormat Format of the IntraPort Shim used to communicate between process-
ing components of a single physical port.

Wber (PN) | Sub-Port Id (SP)

Figure 9: msr him,in Format of the shim Virtual Interface Number (VIN) fields.

The Input VIN (Virtual Interface Number) and Output VIN (Virtual Interface Number) fields are iden-
tical to the InterPort Shim. The Queue Identifier (QID) is a local label that designates the queue for the
packet. In the case of “active” and software reserved flows, this QID also acts as a stream identifier for flows
requiring processing in the SPC. The TTL Chunks field denotes the number of 128 byte chunks of SDRAM

used by the packet. This field must not be modified by the SPC, as it is necessary to manage memory in the
FPX.

The Queue Length field reports the queue length in bytes associated with the QID. The Packet Pointer
and the Second Chunk Pointer are vestiges of a feature no longer supported in the FPX and can be ignored.
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4 System Functional Description

To clarify the packet processing steps, the following sub-sections enumerate the steps for each supported
permutation.

4.1 Management Traffic

Control cells are used for managing the FPX system. The control cells are switched to the control path
at the input of the ISAR and processed by the Control Cell Processor (CCP). The CCP is responsible for
managing the packet classification database, register file, statistics, and queuing parameters. Response cells
are switched into the datapath at the output of the OSAR block.

Based on the communicating entities, management traffic can be grouped into three classes. Between
CP and CCP, Control cells initiated by CP must arrive at SW Interface with CP_Control VVCI Between SPC
and CCP, Control cells coming from SPC will arrive at LC Interface on either SPC _Control VVCI, Between
one CCP and another CCP to facilitate distributed queuing, QM _Control _VVCI

The varying formats of these control cells are documented in Section 5.6.

4.2 Line Card Traffic

Packets arriving from the line-card on sub-ports SPO through SP3 are switched to the RAD 1L.C port of the
RAD by the NID. The ISAR sets the FM flag to 1 = Line Card and writes the Input VIN field based on
the PN register in the register file. The ISAR packs the packet contents into chunks and forwards them to
the PSM (LC). The PSM returns a unique packet pointer while the first chunk is forwarded. The ISAR is
responsible for checking the IP header checksum, the AALS5 checksum, and verifying that the IP total length
and AALS length match. If any of the checks fail, the drop packet flag of the shim is set.

Once the entire packet is received, the ISAR passes the packet fields necessary for classification and
queuing to CARL as described in Section 6.3.

The results of the lookup for a unicast ingress packet will specify an output port and/or queue identifier
(QID) for queuing. CARL updates the Output VIN and QID shim fields based on the results of the lookup.
CARL forwards the packet pointer, shim fields, packet length, and Rates (for reserved flow packets) to the
Queue Manager. Based on these fields, the Queue Manager will select a queue on which to place the packet.

When the Queue Manager schedules a packet for transmission, the packet pointer and shim fields are
sent to the OSAR. Since the FM flag bit is set to 1 = Line Card in the shim, the OSAR demultiplexes the
packet header to the sub-block interfacing to the PSM (LC). The OSAR issues the packet pointer to the PSM
and receives the chunks of the packet. Note that if the drop flag is set, the Queue Manager places the packet
pointer on a special drop queue to the PSM.

In order to transmit the packet, the OSAR must do the following:

eConfigure the InterPort Shim; update the Output VIN

oCreate an AALDS5 frame containing the packet (fragment the packet into ATM cells, compute AAL5
checksum over entire packet, write checksum and packet length in AALS trailer)

eMap the VCI of all cells of the frame to the appropriate switch port based on the Output PN (OBase VCI
+ PN)

15



Note that ingress traffic arriving from the line card will be sent into the switch; therefore, the OSAR must
switch all cells of the AALS frame to the RAD _LC port and send them to the NID.

4.3 Switch Traffic

Packets arriving from the switch on ports PNO through PN7 are switched to the RAD _SW port of the RAD
by the NID. The ISAR sets the FM flag to 0 = Switch in the shim and packs the packet contents into
chunks and forwards them to the PSM (SW). The PSM returns a unique packet pointer while the first chunk
is forwarded. The ISAR is responsible for checking the IP header checksum, the AAL5 checksum, and
verifying that the IP total length and AALS5 length match. If any of the checks fail, the drop packet flag of
the shim is set.

Once the entire packet is received, the ISAR passes the packet fields necessary for classification and
queuing to CARL as described in Section 6.3.

The results of the lookup for a unicast egress packet will specify an outgoing port (Output PN), sub-port
identifier (SPI), and/or queue identifier (QID) for queuing. CARL updates the Output VIN and QID shim
fields based on the results of the lookup. CARL forwards the packet pointer, shim fields, packet length, and
Rates (for reserved flow packets) to the Queue Manager. Based on these fields, the Queue Manager will
select a queue on which to place the packet.

When the Queue Manager schedules a packet for transmission, the packet pointer, and shim fields are
sent to the OSAR. Since the FM flag bit is set to 0 (SW) in the shim, the OSAR demultiplexes the packet
header to the sub-block interfacing to the PSM (SW). The OSAR issues the packet pointer to the PSM and
receives the chunks of the packet. Note that if the drop flag is set, the OSAR asserts a drop signal with the
packet pointer which prompts the PSM to free the associated packet chunks. In order to transmit the packet,
the OSAR must do the following:

eRemove the shim

eDecrement the IPv4 TTL

eUpdate the IPv4 header checksum (using the incremental update algorithm)

oCreate an AALDS5 frame containing the packet (fragment the packet into ATM cells, compute AAL5
checksum over entire packet, write checksum and packet length in AALDS trailer)

eMap the VCI of all cells of the frame to the appropriate sub-port based on the OutputPN (IBase VCI
+ SPI)

Note that egress traffic arriving from the switch with the TO flag set to 1 (LC) will be sent to the line card;
therefore, the OSAR must switch all cells of the AALS5 frame to the RAD_SW port and send them to the
NID.

4.4 SPC Traffic: Active and Exception Processing

Packets arriving from the line card and switch may require processing by the SPC for many reasons: active
processing, unsupported protocols or options). Due to the physical partitioning of the PSM, there must
be two unique VCls in order to prevent interleaving of packet cells and direct returning SPC traffic to the
correct ISAR/PSM pair.

When the OSAR is sends a packet to the SPC it retrieves the entire packet from the PSM and performs
the following steps:
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eConfigure the IntraPort shim; update the Output VIN, flags, QID, Queue Length, TTL Chunks, and
packet pointers.

oCreate an AALDS frame containing the packet (fragment the packet into ATM cells, compute AAL5
checksum over entire packet, write checksum and packet length in AALDS trailer).

eMap the VVCI of all cells of the frame based on the transmission port (see discussion below).

Instead of using the Output VIN for VCI mapping, packets transmitted on the RAD_SW port use
SPC_EG_VCI, while packets transmitted on the RAD_LC port use SPC_IN_VCI. The transmission port
is based on which PSM retrieves the packet from. Full packets returning from the SPC will handled by the
ISARSs in the normal manner. Note that the RC (Re-Classify) bit may be set by the SPC to signal CARL to
re-classify the packet. The SPC may also decide to drop a packet by setting the drop flag (DP).

4.5 Multiple Copies of Packets

Many applications require multiple copies of a packet, for example, network monitoring. The copy count of
a packet is set by CARL based on the results of classification. In the case of network monitoring, one non-
exclusive filter may match the packet and require an additional copy of the packet to be sent to applications
in the SPC on specific queue identifiers (QIDs). Based on the lookup results, CARL makes the required
copies of the packet header fields, updates the necessary shim fields and copy count, and sends the header
fields to the Queue Manager. The Queue Manager maintains the copy count with the packet header fields in
SRAM.

Once a multi-copy packet header is received at the OSAR (denoted by the Final Copy FC flag = 0), the
OSAR initiates a multi-copy transaction with the PSM. Once the copy count reaches zero, the QMGR sets
the FC flag in the shim of the last packet scheduled for transmission. Upon receipt by OSAR and retrieval
from the PSM, the packet chunks are freed in memory. OSAR takes the appropriate transmission actions
based on the destination of the packet.

4.6 Specific Traffics
4.6.1 Multicast Traffic

Note that multicast is a partially implemented feature and should not be relied on without consulting the
designers.

4.6.2 Network Monitoring Traffic
4.6.3 Broadcast Traffic

4.6.4 Software Reserved Traffic
4.6.5 Datagram Traffic

46.6 TTL=1or TTL=0 Traffic

IP packets arriving at the LC interface with TTL=1 or TTL=0 will be forwarded to SPC.
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4.6.7 ICMP Traffic

ICMP packet will be forwarded to SPC.

4.6.8 Fragmented IP Traffic

Processing of fragmented IP packets will not be supported. These packets will be dropped by ISAR and
per-VCI packet drop counter will be incremented.
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5 Component Functional Description

In this section, the function of each component of NSP-RAD will be described.

5.1 Input Segmentation and Reassembly (ISAR)

Top level signals of the Input Segmentation and Reassembly (ISAR) module is shown in Figure 10. ISAR
receives IP packets which are encapsulated in AAL5 frames on both the line card (LC) and switch (SW)
interfaces. Section 6.1 describes the LC and SW interface including the AAL5 frame format and packet
contents. The AALDS5 frame is carried in one or more ATM cells. HEC field of each arriving ATM cell is not
verified. It is assumed that NID will drop cells with corrupted header prior to passing them to ISAR.

On SW interface ISAR may receive control cells sent by the Software. On LC interface, ISAR may
receive control cells from SPC. Both control cells should be merged and passed to CCP.

ISAR interfaces with both LC (Ingress) PSM and SW (Egress) PSM. Packets arriving on the LC interface
will be forwarded to the LC PSM, while those arriving on the SW interface to the SW PSM. ISAR is capable
to support simultaneous processing of two packets one coming from LC and another from SW interfaces.
Generated packet headers will be multiplexed before forwarded to CARL.

Packets arriving on LC interface may come from either the line card (VCI = IBase_VVCI + SPI) or the
Smart Port Card (SPC) (VCI = SPC_IN_VCI). Non SPC packets are formated into one or more 128-byte
chunks, organized as in Figure 53 and Figure 54. For the first chunk, local Input VIN is stamped on the
IVIN field. These chunks are then forwarded to LC PSM.

Pakets arriving on SW interface may come from either the switch (VCI = OBase_VCI + PN) or the
SPC (VCI = SPC_EG_VCI). Non SPC packets have an 8-byte interport shim prepended to each packet as
depicted in Figure 49. As on the ingress case, these packets are also formated into one or more 128-byte
chunks. This time the IVIN value specified in the shim are used.

CP_Control_VCl is used for the Control Processor (CP) software to communicate with CCP. This chan-
nel is only defined on the SW interface. SPC_Control_VVClI is used for the SPC control software to commu-
nicate with CCP. This channel is only defined on the LC interface. DQ_Control_VClI is used for QMGR to
communicate the with other QMGR on the same NSP. This channel is only defined on the SW interface.
Cells arriving with any of these VCI values at appropriate interface will be switched to CPP, otherwise they
are dropped.

Packets arriving from SPC (VCI = SPC_IN_VCI or SPC_EG_VCI) have a 16-byte intraport shim is
prepended to each packet as shown in Figure 50.

For each packet arrives at ISAR, a packet header (reference) as defined in Figure 56 is created and
forwarded to CARL.

Flags fields are to be defined by ISAR as follows.

e DPissetto ’0’, unless any of the following condition occurs in which case it is set to "1,

IPHeader.H-Length < 5
IPHeader. TTL =0
IPHeader.Checksum fails
AAL5Trailer.CRC32 fails
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Figure 10: isar:op Top-level entity of the Input Segmentation and Reassembly (ISAR).
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— CEILING(IPHeader.TotalLength/4) + ShimSize # AAL5Trailer.Length, where ShimSize is in
term of number of 32-bit words as defined below:

x 0 for packets arriving from line card (VCI = IBase_VCI + [0:3])
x 2 for packets arriving from switch (VCI = OBase_VCI + [0:7]).
* 4 for packets arriving from packets arriving from SPC (VCI = SPC_IN_VCl or SPC EG _VCI).

RC is set to "1’ unless any of the following condition occurs in which case it is set to ’0’:

— packet coming on SPC_IN_VCI or SPC_EG_VCI has its RC bit set to "0’ by SPC
— DP bitis 1’ (see condition above)
— EXbitis "1’ (see condition below)

NM is set to "0’ on all cases. This bit will be redefined by CARL. For packets returning from SPC,
the value of NM flag is preserved.

EX is set to "1’ when IP Options exist in the packet header or the packet is not IPv4; "0’ otherwise.
For packets returning from SPC, the value of EX flag is preserved.

FM is set to 1’ if packet arrives on LC interface (i.e., VCI = IBase_VCI + [0:3] or SPC_IN_VCI); set
to '0” if packet arrives on SW interface (i.e., VCI = OBase_VCI + [0:7] or SPC_EG _VCI). For packets
returning from SPC, the value of FM flag is preserved.

TO is set to "0’ on most cases as this bit will be redefined by CARL. For packets returning from SPC
with RC bit set to ’0’, the value of TO flag is preserved.

Internal Flags field is defined as follows:

DG is set to "0’ on all cases. This bit will be redefined by CARL.

SB is set to "0’ on all cases. This bit will be redefined by QMGR.

SR is set to "1’ if packet arrives on SPC_IN_VCI or SPC_EG_VCI, ’0’ otherwise.
IC issetto 1’ on all cases. This bit will be redefined by CARL.

FC is setto 0’ on all cases. This bit will be redefined by QMGR.

LP issetto "0’ on all cases. This bit will be redefined by CARL.

SC is set to "1’ whenever the entire packet fit in a single chunk, otherwise "0’.

Only when the Protocol field equals to TCP (6) or UDP (17) that the Source and Destination Port fields

are defined with values from the IP Header. For other Protocol values, these two fields are set to 0.

ISAR must handle temporary extreme situation gracefully by performing a tail drop as late as possible.

The following is what ISAR must do under different backpressure conditions.

On receiving backpressure from PSM, ISAR will PAUSE (stop processing cells) until its Input FIFO
is full. At that time, ISAR will start emptying Input FIFO and dropping these cells.
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e On receiving backpressure from CARL, ISAR continues processing incoming cell until packet header
is to be released to CARL. There are two input FIFOs (ingress and egress), they will be independently
evaluated. If backpressure is still asserted then, ISAR will PAUSE until its Input FIFO is full. At that
time, ISAR will start emptying the Input FIFO and dropping these cells.

e On receiving queue full from CCP_IN_FIFO, ISAR will drop incoming cells destined to CCP.

CCP maintains several statistic counters that are incrementable by ISAR. Below is a list of those coun-
ters. All these counters are listed at 4, 6, and 8.

e Per-VCI Input Packet Counters — increment when a good packet is received on the corresponding
VCI.

e SPC Packet Counters: Complete Packet Counters (SPCI-IPC and SPCE-IPC) - increment Complete
Packet Counter when a complete packet is received from SPC.

e Control Cell Counters: CP-ICC, SPC-ICC, and DQ-ICC - increment corresponding counters when
received.

e Cell Drop Counter (1IC-DPC) - increment for cell dropped due to back pressure by either CARL or
PSM or when CCP_IN_FIFO becomes full.

¢ Invalid Packet Counter (IVP-DPC) - increment when an errorneous packet is dropped. To distinguish
which error triggers the count, two flags are defined, each associated to the error condition.

— IP Header checksum error flag — set when AALS checksum pass, but IP Checksum fails.

— Packet length mismatch flag — set when AALS5 checksum pass, IP Checksum pass, but AALS5.Length
field does not match IPHeader. TotalLength, taking into account different sizes of shims prepended
to the packet.
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5.2 Packet Storage Manager (PSM)
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Figure 11: PsmFEntity Packet storage manager entity

The packet storage manager (PSM) receives the variable length packets, stores them in the off-chip
SDRAM and gives them out when demanded. A variable size packet is received by PSM in the form of mul-
tiple fixed length chunks from the ISAR. The chunk size for this implementation is 128 bytes. These chunks
can come interleaved for different packets. Upon reception of a chunk from the ISAR, PSM demultiplexes
and appends it to the appropriate packet which is in the process of assembly. At a time, PSM can assemble
16 packets. The packet number corresponding to a particular chunk is given by the CID number associated
with it. CID acts as an index to the context of the packet for which the chunk is received. (CID is the same
as PID in the VHDL code of PSM).

In order to make efficient use of the buffer space, the packets are stored as the linked lists of chunks
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so that the internal fragmentation of the free memory space is minimized. For this purpose, the available
memory is divided into chunks. When a chunk is received, it is stored in a free chunk and this chunk is
appended to the linked list of the corresponding packet. A FIFO list of all the pointers to the free chunks is
maintained. The free chunk pointers are pulled off from this FIFO as and when needed and allocated to the
chunks received.

While a chunk is being written into the SDRAM, the last chunk of a packet might be filled partially. For
this chunk only the valid words need to be written into the SDRAM. This arrangement is provided with the
consideration that the worst case traffic pattern might have all the chunks partially filled, in which case the
goodput of the system will degrade even if the throughput is the same, since a lot of unwanted data is being
written into the SDRAM with each chunk. ISAR gives the length of the packet to PSM when it sends the first
chunk of the packet to PSM. PSM keeps this length in the context of the packet and calculates the number
of valid words it should expect in the incoming chunk. Only the valid words are accepted and written into
the SDRAM. This allows the ISAR to stream the data back to back with arbitrary chunks lengths ranging
from minimum to maximum length of the chunk. However, in the current implementation of the PSM, it
can write data to SDRAM in the bursts which are multiples of 4. Thus, if the remaining number of words
to be written is not a multiple of four then PSM converts it into the next larger value which is a multiple of
four and writes it into the SDRAM. Note that this rounding off is done by PSM and not ISAR. However, in
order to make this work, ISAR must wait for at least four clock cycles after sending a chunk with number of
words not a multiple of four. This allows PSM to write this chunk properly and be ready for the next chunk.
After a chunk is received, PSM fetches a new free-pointer from the free list for the next chunk to come on
the same CID. It takes at least four clock cycles of latency to fetch this free-pointer from the on-chip free
list. Hence the distance between any two back-to-back SOK (Start of Chunk) coming on the same CID must
be at least five(?) clock cycles to allow PSM to replenish the free pointer.

To read a packet out from PSM, OSAR gives the pointer to the packet (which is a pointer to the first
chunk in the packet). PSM reads the chunk starting from this pointer and retrieves the next pointer from this
chunk. It then reads the next chunk from the retrieved pointer and obtains the next pointer. This is continued
until PSM encounters NULL pointer as next pointer in a chunk. Just like in writer side, reader side accepts
packet length from OSAR and keeps track of how many valid bytes are to be read out from the SDRAM.
Depending on the number of bytes left, PSM can give the appropriate read burst length to SDRAM and
just read valid number of words from SDRAM. Again, reading operation too is done in bursts which are
multiples of four. Thus, it is possible that PSM fills the last chunk with some junk data to make the burst
length a multiple of four. Since OSAR already has the length of the packet, it can extract the appropriate
number of bytes from the last chunk that PSM reads out.

As chunks are read out, they become available for reuse. Hence, pointers to chunks are appended to the
free pointer list. However, if a packet is a multi-copy packet then it has to be read out multiple times. Hence
the chunks of this packets are read out, they are not free for reuse unless the packet has been read out for the
last time. OSAR gives a signal with the packet pointer which tells if chunks of the packet should be freed
after they are read out. If chunks should not be freed then they are not appended to the free list. Sometimes,
OSAR needs to read just a specific chunk and not the entire packet. OSAR gives the packet pointer and
instructs PSM to read just the first chunk of the packet. In this case, the chunk read out is not freed. It is
freed only when the entire packet to which it belongs to is read out.

If a packet has to be discarded for some reason then Queue Manager gives the pointer to this packet and
instructs PSM to discard the packet. PSM reads this packet out, frees the chunks occupied by it and appends
free pointers to the free list. When packet is discarded, only the chunk pointers freed by the packet are of
interest and not the remaining data. Hence the chunks are not read completely while a discard packet is
being read but only the first word of the chunk which contains the next pointer is read out. However, since
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the SDRAM operates at four word boundary as mentioned above, single word read is not possible and hence
first four words of the chunk are read. From the packet length received with the discard packet pointer, PSM
figures out if this is a single chunk packet or a multiple chunk packet. If it is a single chunk packet then the
packet need not be read at all. In this case the Packet Pointer supplied by OSAR is directly appended to the
free list without reading the packet pointed to by it. These techniques help make efficient use of the memory
bandwidth.

The list of free chunk pointers is maintained as a FIFO. This FIFO can be too big to fit on the on-chip
RAM. Hence it is kept in SDRAM. However, if every time a pointer is retrieved or pushed into the FIFO in
the SDRAM then there is a bigger latency involved in accessing the SDRAM. To avoid this latency in free
pointer access, some pointers from this Free pointer FIFO in the SDRAM are cached on the on-chip block
RAM and a mini free pointer FIFO is maintained on the chip. When free chunks are needed for writing
incoming chunks, they are pulled off from mini-free-list. Likewise, when chunks are freed after packets
are read out, free pointers are appended to the mini-free-list. When mini-free-list grows beyond a threshold
(presently configured as 496), the excess pointers are pushed back to the free-list in the off-chip SDRAM.
Also, when the number of free pointers in mini-free-list drops below a threshold (presently configured as 32),
it is replenished by fetching the free pointers from the free-list in the off-chip SDRAM. Both, pushing and
fetching pointers to and from the SDRAM list happens in the units of eight SDRAM words each containing
two pointers. The buffer is declared to be full exactly when there are no free pointers in the on-chip FIFO
and off-chip FIFO. At this point, PSM stops accepting data and any excess data given to PSM is dropped,
including the chunk data that is already in the process of transfer. Hence, even a progressing chunk should
be considered corrupt if the BufferFull indication is asserted in the middle of the transfer. (Although, PSM
indicates that there are no free pointers left for data storage, actually there are free pointers left over in the
PID context registers CurrentPointer and NextPointer of each PID context. PSM doesn’t use those if the rest
of the buffer is full) The future version of the PSM should output the number representing the free chunks
left instead of a signal indicating buffer-full. This will allow ISAR to decide when exactly it should stop
supplying data to the PSM. This might allow more flexible buffer management too.
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5.3 Classification and Route Lookup (CARL)

Classification and Route Lookup (CARL) determines the processing and queuing actions performed for each
packet based on the packet header fields received from ISAR. As shown in Figure 12, CARL employs three
distinct classification engines:

eRoute Lookup performs a Longest Prefix Match (LPM) on the IPv4 destination address of packets
arriving from the link (LC) only

eGeneral Filter Match performs an exhaustive search on a small set of general filters specifying a
Longest Prefix Match (LPM) on the source and destination IP addresses, range matches on the source
and destination port numbers, and exact match on the protocol field; general filters have local priority
and may be exclusive or non-exclusive; general filter match may be performed on packets arriving
from the link (LC), switch (SW), both, or neither as specified by the GM _Path register

eExact Filter Match performs an exact match on the packet header 5-tuple for packets arriving from
both the link (LC) and switch (SW); primarily used for software configured reserved flows

SRAM Interface CCP Interface
General
— [l Filter [— I}
gm_in_fifo Match gm_out_fifo
128 64x2 => 4B 128 16x2 => 1B
Exact
— [[[— Filter [— 11—
em_in_fifo em_out_fifo MGR
ISAR 12832x4=> 4B Match 128322 => 2B Result . I(it erface
Interface Input Aggregation
— -
Demux ——» [[[— Route ——» [[[}—> &_ -
rl_in fifo | Lookup fl_out fifo | Priority
128 16x2 => 1B 256 16x1 => 1B Resolution
> [[[—>
pkt_hdr_fifo
prmng pth 128 32x2 => 2B
———p }—»
bypass fifo
bypass path 170 32x3=> 4B

Figure 12: carlylock Block diagram of the Classification and Router Lookup (CARL) block.

The Input Demux module feeds the appropriate packet header fields to each search engine. Packets
requiring classification are placed on the Processing Path. Header fields of ingress packets arriving from
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the link (LC) are always sent to the Route Lookup and Exact Match engines; they are sent to the General
Match Engine if the GM_Path register is set accordingly. Header fields of ingress packets arriving from the
SPC (after processing) that have the reclassify flag set (RC) are treated in the same manner. Header fields of
egress packets arriving from the switch (SW) are always sent to the Exact Match engine; they are sent to the
General Match Engine if the GM_Path register is set accordingly. Header fields of egress packets arriving
from the SPC (after processing) that have the reclassify flag set (RC) are treated in the same manner. A copy
of the packet header for every packet on the Processing Path is placed in a packet header FIFO (pkt _hdr fifo).

Packets returning from the SPC that do not require reclassification or exception packets (IP options,
drops, etc.) are placed into the Bypass Path.

The Result Aggregation and Priority Resolution (RAPR) module services the Processing Path and By-
pass Path in round-robin fashion, updates shim fields, and passes packet headers to the Queue Manager
(QM) input FIFO. For packets on the Processing Path, the RAPR reads the appropriate lookup engine output
FIFOs, performs priority resolution of the lookup results, updates shim fields, and makes copies of packet
headers, if necessary. Packet ordering is maintained among packets on the Processing Path and packets on
the Bypass Path, but not between the two paths. For example, a packet on the Bypass Path may leapfrog
a packet or multiple packets on the Processing Path. This is acceptable as long as the SPC maintains the
same treatment on all packets belonging to the same flow as whether or not they are to be reclassified when
returned to FPX-RAD. The top level signals of the Classification and Route Lookup (CARL) module are
shown in Figure 13.

In order to sustain the combined throughput of 3.2 Gb/s, CARL must process approximately 7M packets
per second. Under nominal conditions, CARL can provide this level of performance. Note that there are
conditions in which CARL will not sustain line speed lookups, such as:

e The system is configured to perform general matching on both ingress and egress traffic

e The distribution of exact match filters causes long linked lists in memory

The following sub-sections provide a detailed description of the operation of each sub-block.

5.3.1 Input Demultiplexor

Note that there is no FIFO between ISAR and CARL. The Input Demultiplexor receives packet header
frames from the ISAR and directly copies header fields to the appropriate FIFOs. If the Re-Classify (RC)
flag is not set, the Input Demultiplexor forwards the packet header frame to the bypass path FIFO. The frame
format for packet header frames in the bypass path FIFO is shown in Figure 14. If the Re-Classify (RC)
flag is set, the Input Demultiplexor copies packet header fields to the appropriate search engine input FIFOs.
Each classification engine ensures in-order delivery of results in dedicated result FIFOs. Note that packet
header frame fields not used for classification are placed in the packet header FIFO on the processing path.
The frame format for packet header frames in the processing path packet header FIFO is shown in Figure 15.
The frame formats for the input FIFOs of each search engine are discussed in the following sub-sections.
The input frame format for the General Match engine is shown in Figure 17; the input frame format for the
Exact Match engine is shown in Figure 22; the input frame format for the Route Lookup engine is shown in
Figure 27.
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Figure 13: carl;op Top-level entity of the Classification and Router Lookup (CARL) block.
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5.3.2 Result Aggregation and Priority Resolution (RAPR)

The Result Aggregation and Priority Resolution (RAPR) serves packets in the bypass path and processing
path in round-robin fashion. The RAPR forwards packets in the bypass path FIFO directly to QMGR
without any processing. When serving packets in processing path, RAPR reads the three search engine
result FIFOs as well as the packet header FIFO in parallel. Based on the lookup results and their associated
priority, the RAPR decides what route, filter, or set of filters to apply to the packet. There are 64 priority
levels; hence, priority is specified by a 6-bit value. 0 is the highest priority and 63 is the lowest priority.
Every exclusive and non-exclusive General Match filter stores its own priority. All Route Lookup entries
share the same priority which is stored in a control register. Likewise, all Exact Match entries share the
same priority which is stored in a control register. See Section 5.6 for details on control register updates and
default values.

A maximum of four matches will be returned for any packet: an exclusive General Match filter, a non-
exclusive General Match filter, an Exact Match filter, and a Route Lookup entry. To avoid confusion, it is
recommended that administrators avoid setting General Match filter priorities to the same priority level as
Exact Match filters and/or Route Lookup entries. Note that non-exclusive General Match filter priority is
only used to select the best matching non-exclusive filter. If a non-exclusive result is returned, then it will
be applied to the packet in addition to the highest priority result from among the exclusive General Match,
Exact Match, and Route Lookup results. In the case that these three results share the same priority, the
exclusive General Match filter takes priority. In the case that Exact Match and Route Lookup results share
the same priority and are the highest priority results, the Exact Match filter takes priority.

When a General Match filter matches (non-exclusive or highest priority exclusive match), the RAPR
must perform a lookup to an on-chip Action table to retrieve the actions associated with the filter and update
the filter counter. Thus, General Match filter counters are only incremented when the filters win the priority
resolution and are applied to a packet. Currently, counters in the Route Lookup and Exact Match engines
are updated when an entry is matched (prior to priority resolution).

The resulting packet header frames are transmitted to the Queue Manager according to the interface
detailed in Section 6.4. For exclusive matches (from General Match, Exact Match, or Route Lookup), the
IC (Initial Copy) and LC (Last Copy) bits will both be set. In the case of a non-exclusive filter match or
multi-copy traffic, the actions will include making multiple copies of the header. When making the copies,
the first copy to be released will have IC bit set, while subsequent copies will not. Likewise, the last copy
to be released will have FC bit set, while previous copies will not. The RAPR also adjusts the Copy Count
field accordingly (“00” - one copy, “01” - two copies, “10” - three copies, “11” - not used).

5.3.3 General Filter Match

The primary purpose of this module is to apply filters to flows or groups of flows for packet filtering and/or
monitoring. Figure 16 shows top level blocks of this module. The GM module performs an exhaustive
search on a set of 32 general filters specifying a Longest Prefix Match (LPM) on the source and destination
IP addresses, range matches on the source and destination port numbers, and exact match on the protocol
field. (Note that the number of filters supported by the GM engine may be changed in the VHDL by altering
the num_gm_filters signal to the CARL entity. Care should be taken in adjusting this value, as it affects
performance.) General filters may be applied to ingress packets, egress packets, or both as specified by the
GM_Path control register. If GM_Path(0) is set to 1, then ingress packets are sent to the General Filter
Match module. If GM_Path(1) is set to 1, then egress packets are sent to the General Filter Match module.
Packets returning from the SPC that need to be reclassified (RC bit is set) are forwarded to the General
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Filter Match module. The load on the module depends on which paths are active. The General Filter Match
module is designed to support link rate traffic and SPC traffic which is 1.2 Gb/s, or for all single ATM cell
IP packet case 2.344 million packets per second. The GM filter match cannot support the full duplex rate
of 3.2 Gb/s; therefore, care should be taken when using general filters on both the ingress and egress path.
Figure 17 shows the format of input frames to the General Match engine stored in the input FIFO.

By Filter Reader

Y]

iy

Out

| DeMux b Mux

Input Queue Output Queue

— | V)

e

Figure 16: carlymplock Block diagram for Generic Filter Match module.
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Figure 17: carlym;n yrame Format for inputs to the General Filter Match from the input FIFO.

A general filter contains fields that fall into two groups: key, which contains the match conditions and
priority used to determine the best matching filter, and action, which indicates actions to be performed on
the packet if the filter matches. Keys are stored in a table searched by the GM module. Actions are stored in
a separate table accessed by the Result Aggregation and Priority Resolution block if a GM filter is a highest
priority match. The format of entries in the Key table are shown in Figure 18. The fields of Key table entries
are defined below:
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Valid (V) - 1-bit

Priority — 6-bit, indicates the filter priority

Exclusive (E) — 1-bit, indicates if it is an exclusive filter
Negation (N) — 1-bit, negates the sense of matching

FroM line card (FM) — 1-bit, FM="1" indicates that this filter is for packets coming from Line Card;
FM="0" for those coming from SWitch.

Masked Source Address — 33-bit; note that we encode prefixes by using ‘0’ followed by all ‘1’s as a
terminating sequence; this allows us to represent a prefix by using one extra bit instead of a separate
32-bit mask; for example, the prefix 101101* is stored as 1011 0101 1111 11111111 111111111111
1

Masked Destination Address — 33-bit, same as masked source address
Low and High Source Ports — 16-bit each to define range
Low and High Destination Port — 16-bit each to define range

WC_Protocol - 9-bit, the lower 8-bit stores the protocol while the 9th bit is used for wild card, i.e. if
set, any value in packet protocol field is a match.
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Figure 18: carlym rilter Format of entries in the Key table in the General Filter Match module.

General filters have local priority and may be exclusive or non-exclusive; The GM module performs
local priority resolution among all matching filters and returns the first highest priority exclusive filter and
first highest priority non-exclusive filter. Figure 19 shows the format of the results passed to the output FIFO
of the General Match module. The fields are defined as follows:

e Match (M) — 1-bit flag denoting if this word contains a matching entry

e EX_FID - Filter Identifier for best-matching exclusive filter

e EX_Priority — Priority level of best-matching exclusive filter
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e NE_FID - Filter Identifier for best-matching non-exclusive filter

e NE_Priority — Priority level of best-matching non-exclusive filter

151413121110 9 8 7 6 5 4 3 2 1 0

M Ex_FID Ex_Priority
N O [
M NE_FID NE_Priority
[ [

Figure 19: carlym,ut ;rame Format for outputs from the General Filter Match to the output FIFO.

If the GM module returns a non-exclusive filter or an exclusive filter with equal or higher priority than
any Exact Match or Route Lookup entry matching the packet, the RAPR retrieves the Action information
associated with the GM filter. Using the Filter Identifier (FID) as an index, the RAPR accesses the Action
information from the Action table and updates the counter stored with the entry. The format of entries in the
Action table are shown in Figure 20. The fields in the Action entries are defined as follows:

e Counter — 32-bit, accounts for packets that match this filter.

e TO - 1-bit, determine the direction the packet is to be forwarded to. TO ="1", packet will be forwarded
to Line Card; ’0’, SWitch.

e Drop Packet (DP) — 1-hit, signals that the packet is to be dropped. If the packet also have a non-
exclusive match that requires a copy to be made, then the copy will be dropped also.

¢ OVIN Valid (OV) - 1-bit, indicates that the OVIN field is a valid OVIN. When OV="0", Ingress packet
will be assigned OVIN from Route Lookup engine if there is a match, otherwise forwarded to SPC;
Egress packet will be assigned OVIN as indicated in InterPort Shim.

e QID - 11-bit, QID value assigned to packet

e OVIN -5-bit, OVIN value assigned to packet

Note that the counter values are updated after priority resolution when the filter is applied to a packet.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O

Counter
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Figure 20: carl,aprym silter Format of values in the Action table for General Match filters which is ac-
cessed by the RAPR.
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5.3.4 Exact Filter Match

The Exact Filter Match block performs an exact match on the packet 5-tuple of ingress and egress packets in
order to identify reserved flows. The lookup process involves a hash over the packet header fields as shown
in Figure 21. Logically, the process is as follows:

eThe LSBs of the source and destination IP address are concatenated to form a pointer into a static
table

olf the entry at the head of the linked list matches, then the search terminates.

oIf the entry at the head of the linked list does not match and there is a valid pointer to another entry in
the list, then the next item in the list is retrieved.

eThe search continues until a matching entry is found or the end of the list is reached.

A more detailed description of how this search is implemented is provided below.

Packet Header 5-tuple

Y

Y

Hash Table

Exact Match Entries

gy
!

Y

Y

Y

Y

Hash Key

\i

Y

Figure 21: carl.mplock Block diagram of hashing scheme for exact filter match lookups.

The format of the frames input to the Exact Filter Match block via an input FIFO are shown in Figure 22.
The Exact Filter Match block must sustain the full 3Gb/s (7M lookups per second) throughput. It has 75% of
the available SRAM bandwidth, as it must allocate two out of every eight clock cycles to the Route Lookup
block. This provides an average of eight memory accesses per lookup.
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Word 1 "\:A Protocol Total Length
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Figure 22: carl,m;nput yrame Frame format for inputs to the Exact Filter Match block via the input FIFO.
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As shown in Figure 23, a 13-bit hash key is composed of the lower 7-bits of the IPv4 source address
concatenated with the lower 6-bits of the IPv4 destination address. This key addresses an on-chip 2 x 8192
hash table requiring 4 BlockRAMSs. Hash table entries contain Ingress Valid and Egress Valid bits depending
on what kind of filter(s) exists in memory that match the hash key. The hash result is considered null if the
valid bit corresponding to the packet direction as determined by the FM flag (0=SW/egress, 1=LC/ingress)
is set to zero. If the result is not null, the 18-bit SRAM address of the head of the linked list is created by
prepending a 1-bit offset (set to ’1’), the FM shim flag, and the product of the 13-bit hash key multiplied
by six (6). Note that the hash key may be viewed as an entry index. Since EM entries occupy six words of
memory, the key must be multiplied by six and concatenated to the offset and From bits in order to generate
the correct address.

A memory map of the SRAM shared between the Route Lookup and Exact Match engines is shown
in Figure 24. Note that the lower half of memory is dedicated to the Exact Match table. The EM space
dedicates half of its space (one quarter of the total) to ingress filter entries, and half of its space to egress
filter entries. Both the ingress and egress space are divided into two buffers for head entries and list entries.
Note that the size and boundaries of the buffers facilitate indexed addressing. Hash keys and pointers should
be considered as indexes into the buffers. Addresses are generated by multiplying the indexes by six (6) and
prepending the correct offset bits. Also note that two head entries are allocated for each hash key in each of
the head entry buffer pools. This was done to simplify table management. The total capacity of the Exact
Match filter table is 20,480 filters.

As shown in Figure 25, entries contain the remaining bits of the 5-tuple, flags, two OutputVINs, two
QIDs, byte and packet counters, and a linked-list pointer requiring six 36-bit SRAM words. Note that the
most significant bit of the second word is the linked-list pointer V (Valid) bit. This bit is set to 1 if the linked
list pointer is valid; it is set to O if not, signaling the end of the list has been reached.

The flags are defined as follows:

eFilter Type: 000 = unicast software reserved flow; 001 = multicast software reserved flow

oTO (To LC/SW): This flag allows components to distinguish the destination of the packet via a single
bit compare. 0 = To Switch, 1 = To Line Card. Note that the flag defaults to 0 (SW) for multicast
filters.

oV0 (Valid branch 0) When the filter type is multicast and the zero (0) branch of the tree is valid, this
flag is set to 1, otherwise 0. OutputVINO and QIDO are used to forward the packet.

oV1 (Valid branch 1) When the filter type is multicast and the one (1) branch of the tree is valid, this
flag is set to 1, otherwise 0. OutputVIN1 and QID1 are used to forward the packet.

eSU (Suppress Upstream-copy) When the filter type is multicast and the OutputVIN matches the
InputVIN, an upstream copy of the packet will be generated. This flag may be set to 1 to prevent the
upstream copy from being sent. The flag defaults to 0, allowing upstream copies to be sent.

Note that OutputVIN1 and QID1 will only be valid when the filter type is a multicast software reserved flow
(001).

Note that multicast is a partially implemented feature and should not be relied on without consulting the
designers.

Note that the bottom half of Figure 23 illustrates the mechanism for generating the physical address of
exact match list entries (or entries which are not at the head of the linked list). If the packet 5-tuple matches
the 5-tuple stored in the filter entry, then a matching filter is found. If the filter does not match and the next
pointer valid bit is not set, then the search terminates. If the filter does not match and the next pointer valid
bit is set, then the address of the next entry in the linked list is constructed as follows. The EM offset bit (set
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Figure 23: carlemplockqetail Detailed block diagram of hashing scheme for exact filter match lookups.
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Address Contents
?é)) 0000 0000 0000 0000

Tree Bitmap

Route Lookup Table
131,072 words

10 0000 0000 0000 0000 )
(131,072) Egress Head Entries

8,192 entries (13-hit ptr)
49,152 words

10 1100 0000 0000 0000 i .
(180,224) Egress List Entries

2,048 entries (11-bit ptr)
12,288 words

10 1111 0000 0000 0000
(192,512) UNUSED

Exact Match Table

11 0000 0000 0000 0000 .
(196,608) Ingress Head Entries

8,192 entrles (13-bit ptr)
49152 words

11 1100 0000 0000 0000 ) .
(245,760) Ingress List Entries

2,048 entrles (11-bit ptr)
12,288 words

UNUSED

11 1111 0000 0000 0000
(258,048)

(262,148)

Figure 24: em fipl,,emmap Memory map of the 8Mb (262,148 word) SRAM shared between the Route
Lookup and Exact Match search engines.
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Figure 25: carl.mentry Diagram of exact filter match entries.
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to ‘1%), the FM flag, and EM list entry offset (set to “11”) are prepended to the product of the 11-bit next
pointer multiplied by six (6). This will index the correct entry in the correct list entry buffer.

Upon finding a matching filter, the packet Total Length field is added to the Byte Counter and the Packet
Counter is incremented. Both fields are written back to memory. The format of the results passed to the
Exact Filter Match output FIFO is shown in Figure 26. Note that the most significant bit of Word 1 (labeled
M) is set to 1 if a matching filter was found; it is set to 0 if no matching filter was found. Note that both result
words will be written to the output FIFO regardless of whether or not a matching filter was found. Allowing
for counter writebacks, retrieving a matching entry requires eight clock cycles requiring an average of one
hash probe per lookup. Note that searches terminate when no matching filter is found and the next-pointer
valid bit of the last filter searched is zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O

Word 1M Flags
I O \ | | | [ l [ | [ | [ |
Word 2 Queue I dentifier 1 (QID1) Queue Identifier 0 (QID0) | OutputVIN1 | OutputVINO
l I ) I I O O L1 [

Figure 26: carl.mutput yrame Frame format for outputs from the Exact Filter Match block to the output
FIFO.

5.3.5 Route Lookup

The route lookup engine performs a Longest Prefix Match (LPM) using a compressed trie datastructure
called Tree Bitmap [10]. Since this function must only be performed on traffic arriving from the link, the
Route Lookup engine must sustain a throughput of 1 Gb/s or 2.36M lookups per second. Note that in this
application the LPM is performed over 32 bits, the IPv4 destination address. Addresses are fed to the route
lookup engine via an input FIFO in the format shown in Figure 27.

151413121110 9 8 7 6 5 4 3 2 1 0

Word 1 Destination Address (31:16)
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Word 2 Destination Address (15:0)
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Figure 27: carl pipl;nput frame Format of input FIFO data for the route lookup engine.

The datastructure is searched using pipelined Fast IP Lookup (FIPL) engines as described in [11].
Note that we employ the “Split-Tree” version of the datastructre which aligns the multi-bit nodes on bit-
boundaries which are a multiple of 4. This improves average lookup performance due to the dominance of
16- and 24-bit prefixes in routing tables. The first bit of the IP Destination address determines whether the
search continues with the right (1) or left (0) subtree. Pointers to the root nodes of these subtrees are stored
in registers that are read/write-able via the CCP. Employing a 4-bit stride, creates Tree Bitmap subtrees with
a maximum depth of 8 nodes. The Tree Bitmap node format is shown in Figure 28. In this case, a worst-
case lookup requires 11 memory accesses using an optimization of the level 8 nodes. With a clock speed of
75 MHz, a signal FIPL engine can achieve a worst case lookup rate of 852k lookups per second. Note that
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actual performance is highly dependent upon the average depth of prefixes in the datastructure. As reported
in [11], performance studies using the Mae West routing database showed that employing two FIPL engines
achieved a throughput of 2.95M lookups per second.

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O
Extending Paths Bitmap (15:0)
I B o

Internal Prefix Bitmap (14:0)
Iy I e o

Figure 28: carl.l,ode Tree Bitmap node format.

All lookup results have the same fixed 6-bit priority, configurable via a register in the CCP. Each entry
returns and OutputVIN and packet counter as shown in Figure 29. Packet counters are incremented when a
matching route lookup entry is applied to a packet and written back to memory. The OutputVIN and match
flag are written to the output FIFO as shown in Figure 30. The match flag is set if a route was found in the

table.
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OutputVIN Packet Counter (15:0)
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Figure 29: carl,.l.ntry Format of route lookup entries.
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Figure 30: carl pipl,utput yrame Format of route lookup results written to the output FIFO.
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5.4 Queue Manager (QMGR)

Top level signals of the Queue Manager (QMGR) module are shown in Figure 31. The Queue Manager
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Figure 31: gmgr;op Top-level entity of the Queue Manager (QMGR)

(QMGR) manages packets going to the switch fabric (SW), the line card (LC) and the Smart Port Card
(SPC). When the QMGR receives a packet header from the CARL, it places the packet onto one of the
queues based on the destination and Queue Identifier (QID) of the packet.

The interface between the CARL and the QMGR is shown in Figure 58.

The QMGR exams the DP (Drop Packet) flag fist. If DP = 1, the packet is to be dropped. The QMGR
will put the packet into the Drop Packet FIFO between the QMGR and the PSM (Packet Storage Manager).

If the packet is not to be dropped, The QMGR determines the destination of the packets based on the
flags and the QID of the packet. The TO (To LC/SW) flag indicates the destination of the packet. The
packet is destined for the switch if TO = 0 and is destined for the line card if TO = 1. If the QID is within
a certain range (1:127) and the SR (SPC-return) flag is not set (SR = 0), the packet should be sent to SPC
for processing. The QMGR will place the packet onto one of the SPC queues. The QMGR will set the SB
(SPC-bound) flag to 1. This flag is used by the OSAR to determine the destination of the packet. If the QID
is within the SPC range and the SR flag is set (SR = 1), the packet has already be processed by SPC and is
ready to be transmitted to the switch or the line card. In this case, the destination of the packet is determined
by the TO flag described above.

The CARL (Classification and Route Lookup) can produce up to three copies of the packet. The IC
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(Initial Copy) flag is set to 1 by the CARL for the first copy of the packet. The Copy Count (CpyCnt) field
defines the total number of the additional copies. CpyCnt = 0 means that there is only a single copy of
the packet; CpyCnt = 1 means that there is one extra copy of the packet (total of two copies); CpyCnt =
2 means that there are two extra copies of the packet (total of three copies). Multiple copies of the packet
headers are queued separately based on each copy’s destination and QID. However, a Common Reference
entry is shared by all copies of the same packet in the QMGR. The Common Reference entry contains the
copy count reference and the packet pointer to the SDRAM where the packet is physically stored. A new
Common Reference entry is assigned when the QMGR receives the first copy of a multiple copy packet
request from the CARL. When any one of the multi-copy packets is selected for departure, the common
reference entry is visited and the copy count in the entry is updated. If the common copy count reference
is zero before updating, the FC (Final Copy) flag is set to 1. In this case, the OSAR will instruct the PSM
(Packet Storage Manager) to free up the chunks after reading the packet out of the SDRAM. If the common
copy count reference is not zero before updating, the QMGR decrements the copy count by 1 and sets the
FC flag to 0. When the PSM retrieves the copy of the packet in this case, it does not free up the chunk space
occupied by the packet. For single copy packets, the FC flag is always set to 1.

The QMGR interfaces with the external SRAM where all packet headers are stored. The SRAM is
partitioned into a set of two-word entries. With an 1 MB SRAM configuration, the QMGR can support up
to 2'7 single copy packets. Multi copy packets need an extra entry to store the common reference entry. The
memory word format of a single copy packet header is shown in Figure 32. The Flag, the Internal Flag,

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O
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Figure 32: sramgingle.pyy,ktnreader SRAM Single Copy Packet Header Entry

the Total Length and the Sub Port Identifier (SPI) are taken from the packet header fields passed from the
CARL. The CpyCnt field should be always 0 in this case. These two bits are also used to distinguish the
single copy packet header format from the multi copy packet header format. The Next Pointer field is used
to link packets in the queue. The Output VIN and the QID are not stored in the SRAM with the packets.
These are queue specific fields and can be recovered from the queue the packet is placed on.

Each copy of the packet header of an multi copy packet is queued independently. The entry used to store
multi-copy packets is slightly different from the one used by the single copy packets. The SRAM entry of a
multi copy packet is shown in Figure 33. The Common Reference Pointer points to the Common Reference

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O

F Internal Fl Cpy
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Figure 33: sramyulti.pypktyeader SRAM Multi-Copy Packet Header Entry

entry where the copy count and the packet pointer are stored. The Common Reference Pointer Entry is
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shown in Figure 34.
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Figure 34: sramc.ommon,ef SRAM Multi Copy Packet Common Reference Entry

The QMGR supports 512 queues. Queues are identified by the Queue Identifiers (QID). It supports
127 queues destined for the SPC, 127 queues coming back from the SPC, 8 ingress datagram queues, 64
egress datagram queues, and 184 other reserved flow queues shared between ingress and egress. The QID
assignments are as follows:

e 1-127: To SPC (1-7 are FPX reserved SPC queues. Software can only use 8-127)
e 128 - 255: From SPC (Internal to the QMGR, not software configurable.)

e 256 - 439: Reserved flow queues

e 440 - 503: Line card (egress) datagram queues

e 504 - 511: Switch (ingress) Virtual Output Qeues (VOQs)

Packets destined for the line card or SPC are queued based their QIDs. QIDs for packets going to the
SPC are in the range of 1 to 127. An offset of 128 is added to the packets coming back from the SPC. The
new QID used in the QMGR is determined by QID + SPC_QID_BASE, where SPC _QID _BASE = 128. The
SPC return packets are then placed in either the switch side queues or the line card side queues.

The egress queue manager rate limits the traffic it sends to the SPC and line card using two token bucket
regulators. By default the SPC is rate limited to 200Mb/s and the line card to 600Mbps, although this may
be altered by writing to registers 0x0e (signal QM _SPC) and 0x0d (signal QM _LINK). These registers set
the bucket’s token fill rate which in turn sets the average sending rate. The actual sending rate depends on
the FPX’s clock rate F and the token fill rate z according to R(Kbps) = F*z/1024. The current clock rate is
62.5MHz so the sending rate is approximated by R(z) = z*61(Kb/s).

In addition to rate limiting the sending rates, the egress queue manager assigns both a threshold and
weight to each queue. The threshold is used to determine when packets are to be dropped. If adding a
packet to a queue would cause the length to exceed the threshold then the packet is dropped. The weights
(i.e. quantums) are used to implement a weighted deficit round roubin (WDRR) service disclipline across
all ready queues.

The ingress queue manager implements per VOQ rate control using eight token bucket regulators. A
threshold and token rate parameter is associated with each of the eight VOQs. As with the egress side, the
threshold implements the drop policy and token rate sets the average sending rate to the associated output
port.
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5.5 Output Segmentation and Reassembly (OSAR)

Top level signals of the Onput Segmentation and Reassembly (OSAR) module is shown in Figure 35.

The OSAR module receives packet retrieval requests from the Queue Manager (QMGR). It forwards the
request to either the Ingress Packet Storage Manager (Ingress PSM) or the Egress Packet Storage Manager
(Egress PSM) based on IE field in shim flag. Packets retrieved by the PSM contain one or more 64-bytes
chunks. The OSAR formats data into AAL5 frames and sends the ATM cells to either the line card (LC) or
the switch (SW) interfaces based on the destination. Control cells received from the Control Cell Processor
(CCP) are multiplexed onto SW interface as well.

The OSAR interfaces with two independent PSMs (LC and SW PSM). The packets originally coming
from the LC interface are stored in the LC PSM and the packets coming from the SW interface are stored in
the SW PSM. There are two separate FIFOs between the QMGR and the OSAR. Packets retrieval requests
for packets stored in the LC PSM are in the LC OSAR FIFO, and the packets requests for packets stored in
the SW PSM are in the SW OSAR FIFO. The OSAR will forward the requests to the correct PSM interface.
After the packets are retrieved from the PSM, the OSAR needs to switch the packets to the correct NID/RAD
interfaces at AALDS level. In other words, two packets with the same destination interface (LC/SW) retrieved
from the LC PSM and the SW PSM respectively can not be interleaved. For a specific NID/RAD interface
(LC/SW), the OSAR must transmit the entire AALS5 frame received from a single PSM (LC/SW) before it
can transmit an AALD5 frame received from the other PSM (SW/LC). This is necessary to avoid interleaving
AALS5 frames with the same VCI.

The OSAR checks the LC (Last Copy) flag in the packet header. If the LC flag is set, the OSAR generates
LST_CPY_OSAR signal to the PSM. In this case, the PSM frees the chunk pointers after retrieving the
packet. The Total Length field is also sent to the PSM.

For packets going to the SW, the OSAR needs to perform the following operations before transmitting
the packet to SW interface. The OSAR inserts Flags, Input VIN and Output VIN in the InterPort Shim.
The OSAR segments the packet into ATM cells, and creates an AAL5 frame for each packet. The VCI
of all cells in the AALS5 frame is determined by the Output VIN (VCI = OBased _VCI + Output VIN PN).
AALDS5 padding is set to zeros. UU and CPI fields in AALS trailer are all zeros. Length field in AAL5
trailer includes shim fields and the length of the packet (excluding AALS5 padding and AALS trailer). AALS
checksum is computed over the payloads of all ATM cells in the frame (excluding checksum field).

For packets going to the LC, the OSAR removes the shim and updates the IPv4 checksum using the
incremental update algorithm. The IPv4 TTL is decremented. The OSAR updates the IPv4 header checksum
using the incremental update algorithm. The OSAR segments the packet into ATM cells, and creates an
AALS5 frame for each packet. The VCI of all cells in the AALS5 frame is determined by the Output VIN
(VCI = IBased_VCI + SPI). AALS5 padding is set to zeros. UU and CPI fields in AALDS trailer are all zeros.
Length field in AALS trailer excludes AALS padding and AALS trailer. AALS checksum is computed over
the payloads of all ATM cells in the frame (excluding checksum field).

For packets going to SPC for processing (SB = 1), the OSAR sends the packet out differently depending
on where the packet came from. If the packet comes from the LC, the packet should be transmitted on the
RAD_LC port, with the VCI set to SPC_IN_VCI. If the packet comes from the SW, the packet is transmitted
on the RAD_SW port, with the VCI set to SPC_EG_VCI. The OSAR inserts Flags, Input VIN, Output VIN,
QID, Total Chunks and Queue Length fields in the IntraPort Shim.

The OSAR retrieves the entire packet from the PSM, inserts IntraPort Shim, segments the packet into
ATM cells, creates an AALS frame for the packet and sends it to the SPC.
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Figure 35: osaryop Top-level entity of the Onput Segmentation and Reassembly (OSAR).
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5.6 Control Cell Processor (CCP)

The Control Cell Processor (CCP) is the centralized control block of the system; hence, the CCP receives
and transmits all control cells. A block diagram off the CCP is shown in Figure 36. Control cells are
passed to the CCP from the ISAR via a FIFO input interface as described in Section 6.8. Response cells are
passed from the CCP to the OSAR via a modified UTOPIA interface as described in Section 6.9. In order
to conform to the convention that SPC-bound traffic from the FPX have a VPI of to 0x001, the CCP will
set the VPI of response cells on the SPC_Control _VVCI to 0x001. Note that all incoming control cells should
have a VPI of 0x000. The CCP also timestamps all response cells with the upper 24-bits of a 32-bit counter.
The counter is simply a running counter that increments once per clock cycle and rolls over.

The CCP provides control communication to several of the blocks in the system, allowing SPCs and
other FPXs to exchange control information. The following sub-sections describe the control functions and
associated control cell formats.

5.6.1 Register File Status & Updates

The CCP maintains the on-chip register file for the system. The control cell format for register file updates
and status reads is shown in Figure 37. Description and default values for each register in the register file
are shown in Table 1. Note that these default values are set by the reset signal. Also note that the Ibase VCI
must be an even multiple of four, as the actual sub-port VCI number is determined by appending the SPI
to the upper 14-bits of the Ibase_VCI. Also note that the Obase _VCI must be an even multiple of eight, as
the actual sub-port VCI number is determined by appending the PN to the upper 13-bits of the Obase _VCI.
The associated OpCodes for register file operations are shown in Table 3. Note that the CCP generates an
response cell with an OpCode value of one plus the original OpCode for each register file control cell.

5.6.2 System Counters and Flags

The CCP manages a number of system counters and flags for management and debugging purposes. The
set of counters includes per-VCI input and output packet counters, as well as error counters and flags. All
counters are 32-bits wide.

Table 4 lists the input packet counters with their associated number, name, and description. Table 5
lists the output packet counters with their associated number, name, and description. Table 6 lists the input
control cell counters with their associated number, name, and description. Table 7 lists the output control
cell counters with their associated number, name, and description. Table 9 lists the good cell counters with
their associated number, name, and description.

Table 8 lists the packet and cell drop counters with their associated number, name, and description. Note
that the ISAR cell drop counter counts the number of cells dropped at the ISAR due to congestion at the
PSM or CARL interfaces. The ISAR invalid packet drop counter counts the number of packets dropped due
to invalid AALS5 checksums, etc. The rare exception cases are captured in system flags which are defined as
follows:

oIPH (IP Header checksum fail): set by ISAR only if the AAL5 checksum passes and the IP header
checksum fails; reset on counter/flag reset command.

oM (Length Mismatch): set by ISAR only if the AAL5 checksum passes and the IP Total Length
and AALS5 length mismatch; reset on counter/flag reset command.
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Figure 37: reg.c Control cell format for register file updates. Note that the width of the register value
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depends on the register number, where i is the width of the updated register minus one.
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Table 1: Description and default values for register file.

Registers are set to default values at system

startup, hardware reset, and reset control command. *Note that response cells for commands received on
the SPC_Control_VVCI will be transmitted with a VPI = 0x001. **Note that rate specifications use floating
point representation: 1.z x 2¥ where z = (upper 4-bits), y = (lower 4-bits)

Reg Number | Reg Name Width (bits) | Default Description
0x00 PN (Port Number) 3 0 (0x0) Physical port number of the FPX
0x01 CP_Control_VCI 16 35 (0x23) Control cell VCI for CP
0x02 SPC_Control_VCI 16 29 (0x1D) Control cell VCI for SPC
* Response cell VPI = 0x001
0x03 DQ_Control_VCI 16 61 (0x3D) Control cell VCI for DQ
0x04 Ibase_VCI 16 128 (0x80) Base VCI for link traffic
0x05 Obase_VCI 16 64 (0x40) Base VCI for switch traffic
0x06 SPC_IN_VCI 16 62 (0x3E) VCI for ingress SPC traffic
0x07 SPC_EG_VCI 16 63 (0x3F) VCI for egress SPC traffic
0x08 RL_LtreeRootNodePtr | 18 0 (0x0) Root node pointer for the left subtree
of the Split-Tree FIPL Tree Bitmap
Ox1F RL_RtreeRootNodePtr | 18 2 (0x2) Root node pointer for the right subtree
of the Split-Tree FIPL Tree Bitmap
0x09 RL_Priority 6 60 (0x3C) Priority of route lookup results
O0x0A EM_Offset 1 1 Address offset of exact match entries
0x0B EM_Priority 6 56 (0x38) Priority of exact match results
0x0C QM_Speed 8 2 (0x02) Speed advantage (ratio)
0x0D QM_Link 8 x=.875, y=13 (OXED) | Link rate in multiples of 64kb/s
(983 Mb/s) ** See note in caption
0x0E QM_SPC 8 x=.5, y=11 (0x8B) SPC rate in multiples of 64kb/s
(197 Mb/s) ** See note in caption
Ox0F GM_Path 2 01 Active path for general match filters
00 = off, 01 = ingress
10 = egress, 11 = ingress & egress
0x10 QM_Datagram 15 2048 (0x0800) Rate for datagram traffic
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Table 2: Description of debugging registers in the TEMPORARY _debug versions of the design.

Reg Number | Reg Name Width (bits) | Default | Description
0x10 ISAR/CARL 24 0 (0x0) | Counts header transfers from
ISAR to CARL (soh_isar pulses)
0x11 CARL/QM 24 0 (0x0) | Counts header transfers from
CARL to QM (wen_gm positive edges)
0x12 QM/OSAR(LC) | 24 0 (0x0) | Counts header transfers from
QM to OSAR(LC) (wen_lc_osar positive edges)
0x13 QM/OSAR(SW) | 24 0 (0x0) | Counts header transfers from
QM to OSAR(SW) (wen_sw_osar positive edges)
0x14 OSAR(SW)/PSM | 24 0 (0x0) | Counts packet pointer transfers from
OSAR(SW) to PSM (pkt_reg_osar_sw pulses)
0x15 PSM/OSAR(SW) | 24 0 (0x0) | Counts first packet chunk transfers from
PSM to OSAR(SW) (sop_psm_sw pulses)
0x16 PSM/OSAR(SW) | 24 0 (0x0) | Counts last packet chunk transfers from
PSM to OSAR(SW) (eop_psm_sw pulses)
0x17 OSAR(LC)/PSM | 24 0 (0x0) | Counts packet pointer transfers from
OSAR(LC) to PSM (pkt_req_osar_lc pulses)
0x18 PSM/OSAR(LC) | 24 0 (0x0) | Counts first packet chunk transfers from
PSM to OSAR(LC) (sop_psm_Ic pulses)
0x19 PSM/OSAR(LC) | 24 0 (0x0) | Counts last packet chunk transfers from
PSM to OSAR(LC) (eop_psm_Ic pulses)

Table 3: OpCodes for register operations.

OpCode | Operation

0x00 Reset registers to default values

0x01 Reset registers response

0x02 Read specified register

0x03 Read specified register response
0x04 Write specified register

0x05 Write specified register response
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Table 4: Input Packet Counter (IPC) table: per-VCI input packet counters incremented when a packet is
received by ISAR on the associated VCI.

Counter Number | Counter Name | Description

0x00 SPO-IPC Sub-Port 0 input packet counter
0x01 SP1-IPC Sub-Port 1 input packet counter
0x02 SP2-IPC Sub-Port 2 input packet counter
0x03 SP3-IPC Sub-Port 3 input packet counter
0x04 PNO-IPC Port Number 0 input packet counter
0x05 PN1-1PC Port Number 1 input packet counter
0x06 PN2-1PC Port Number 2 input packet counter
0x07 PN3-1PC Port Number 3 input packet counter
0x08 PN4-1PC Port Number 4 input packet counter
0x09 PN5-1PC Port Number 5 input packet counter
Ox0A PN6-1PC Port Number 6 input packet counter
0x0B PN7-1PC Port Number 7 input packet counter
0x0C SPCI-IPC Ingress SPC input packet counter
0x0D SPCE-IPC Egress SPC input packet counter

The OpCodes for system counter and flag commands are shown in Table 10, while the control cell format
for system counter and flag operations is shown in Figure 38.

Counter increment commands are passed to the CCP from the other blocks of the design. These com-
mands are simply an increment signal accompanied by a register number.

5.6.3 CARL Updates

The Route Lookup and Exact Filter Match blocks share an interface to the SRAM used by CARL. In order
to update or read the contents of this memory for route updates or exact match filter updates, control cells
must use the format shown in Figure 39. Note that this cell format must be used in order to read Exact Match
packet and byte counters. Note that these commands may also be used to “dump” the contents of memory
for debugging purposes.

Note that updating an Exact Match filter requires updating the contents of the on-chip hash table. The
control cell format for these operations is shown in Figure 40. Upon receipt of the control cell, the CCP
must request access to the EM hash table to prevent a simultaneous read/write operation which would result
in undefined read output. After the grant signal is asserted, the CCP may access the EM hash table. Further
details and timing diagrams are contained in Section 6.11.

Updating a General Match Filter requires updating the contents of the on-chip filter table. The control
cell format for these operation is shown in Figure 41. A request/grant interface similar to the EM hash table
exists for the GM filter table. Further details and timing diagrams are contained in Section 6.11.

The associated opcodes for control cells and response cells are given in Table 11.

5.6.4 Queue Status and Updates

In order to monitor and control the behavior of the Queue Manger, software must have the ability to read
queue lengths, transmit queue length information, and update scheduling quantum. The CCP/QMGR control
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Figure 38: ccp.ounter,ead Format of control cells used to read system counters. Note that system flags are
included in every counter read response.
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Table 5: Output Packet Counter (OPC) table: per-VCI output packet counters incremented when a packet is
transmitted by OSAR on the associated VCI.

Counter Number | Counter Name | Description

0x10 SP0-OPC Sub-Port 0 output packet counter
0x11 SP1-OPC Sub-Port 1 output packet counter
0x12 SP2-OPC Sub-Port 2 output packet counter
0x13 SP3-0OPC Sub-Port 3 output packet counter
0x14 PNO-OPC Port Number 0 output packet counter
0x15 PN1-OPC Port Number 1 output packet counter
0x16 PN2-OPC Port Number 2 output packet counter
0x17 PN3-OPC Port Number 3 output packet counter
0x18 PN4-OPC Port Number 4 output packet counter
0x19 PN5-OPC Port Number 5 output packet counter
0x1A PN6-OPC Port Number 6 output packet counter
0x1B PN7-OPC Port Number 7 output packet counter
0x1C SPCI-OPC Ingress SPC output packet counter
0x1D SPCE-OPC Egress SPC output packet counter

Table 6: Input Control cell Counter (ICC) table: per-VCI input control cell counters incremented when a
control cell is received by the ISAR on the associated VCI.

Counter Number | Counter Name | Description

0x20 SPC-ICC SPC input control cell counter
0x21 DQ-ICC DQ input control cell counter
0x22 CP-ICC CP input control cell counter

Table 7: Output Control cell Counter (OCC) table: per-VCI output control cell counters incremented when
a control cell is transmitted by the OSAR on the associated VCI.

Counter Number | Counter Name | Description

0x30 SPC-OCC SPC output control cell counter
0x31 DQ-OCC DQ output control cell counter
0x32 CP-OCC CP output control cell counter

Table 8: Drop Counter (DPC) table: counters incremented when packets or cells are dropped.

Counter Number | Counter Name | Description

0x40 IIC-DPC-LC ISAR input cell drop counter (Ingress Side)
0x45 IIC-DPC-SW | ISAR input cell drop counter (Egress Side)
0x41 IVP-DPC-LC | ISAR invalid packet drop counter (Ingress Side)
0x46 IVP-DPC-SW | ISAR invalid packet drop counter (Egress Side)
0x42 QMLC-DPC QM packet drop counter for LC queues

0x43 QMSW-DPC | QM packet drop counter for SW queues

0x44 QMSPC-DPC | QM packet drop counter for SPC queues
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V - Valid Command: 1 = Valid command, 0 = Invalid, EOC

D - Device: 1 =Device 1, 0 =Device 0
R - Read or Write: 1 =Read, 0 = Write
F — 32 or 36 bit: 1 = 36 bit, 0 = 32 bit

Figure 39: sramqpdate.c Control cell format for CARL SRAM updates.
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Figure 40: hash;able,pdate.c Control cell format for EM hash table updates.
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Figure 41: gm silterypdate.c Control cell format for GM filter table updates.
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Table 9: ISAR Good Cell Counters.
Counter Number | Counter Name | Description
0x50 IIC-GDC-LC | ISAR good received cell counter (Ingress Side)
0x51 IIC-GDC-SW | ISAR good received cell counter (Egress Side)

Table 10: OpCodes for system counter and flag functions.

OpCode | Action (parameters)

0x10 Reset system counters/flags

0x11 Reset system counters/flags response
0x12 Read specified counter

0x13 Read specified counter response

interface provides these capabilities. The OpCodes for the various operations are shown in Table 12.

The QID Queue Length Query command allows components to read the length of a specific flow queue
identified by its Queue Identifier (QID). The control cell format for the QID Queue Length Query is shown
in Figure 42.

The QID Quantum Update command allows components to update the 32-bit quantum information
(weight, or byte count) used by the Queue Manger for scheduling the queue identified by the QID. The
control cell format for the QID Quantum Updates is shown in Figure 43.

The QID Queue Length Threshold Update command allows components to update the 32-bit queue
length threshold (bytes) for a specific QID in the Queue Manager. The control cell format for the QID
Queue Length Threshold Update is shown in Figure 44.

The VOQ Queue Length Query command allows components to read the length of the eight Virtual
Output Queues (VOQs) and the sum of all egress queues. All lengths are 32-bit byte counts. The control
cell format for the VOQ Queue Length Query is shown in Figure 45.

The VOQ Quantum Update command allows components to update the quantum information (weight,
or byte count) used by the Queue Manger for scheduling. VOQ quantum are 32-bit byte counts with a
minimum equal to the maximum packet size (MTU of the egress port). Note that this command also updates
the switch bandwidth, given as a 32-bit rate in Kbps. The control cell format for the VOQ Quantum Update
command is shown in Figure 46.

The VOQ Queue Length Threshold Update command allows components to update the queue length

Table 11: OpCodes for Route Lookup SRAM update functions.
OpCode | Action (parameters)

0x40 SRAM update

0x41 SRAM update response

0x42 EM hash table read

0x43 EM hash table read response
0x44 EM hash table write

0x45 EM hash table write response
0x46 GM filter table update

0x47 GM filter table update response
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HDR
HEC
PL1
PL2
PL3
PL4

I e
PL5

I e
PL6

I e
PL7

I e
PL8

I I
PL9O

I e e e
PL10

I e
PL11 CM DATA

I e e
PL12 Sequence # CRC

S S S s s s A

Figure 42: glenquery.c Control cell format for QID Queue Length Query (OpCode 0x60).
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HDR
HEC
PL1
PL2
PL3
PL4

I I I e I
PL5

I I I e I
PL6

I I I e I
PL7

I I I e I
PL8

I I e e I
PL9

I I I e I
PL10

I I I e I
PL11 CM DATA

I I e e e e e e o I
PL12 Sequence # CRC

I I s

Figure 43: gidquant,pdate.c Control cell format for QID Quantum Updates (OpCode 0x62).
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HDR
HEC
PL1
PL2
PL3
PL4

I I I e I
PL5

I I I e I
PL6

I I I e I
PL7

I I I e I
PL8

I I e e I
PL9

I I I e I
PL10

I I I e I
PL11 CM DATA

I I e e e e e e o I
PL12 Sequence # CRC

I I s

Figure 44: gidglen,pdate.c Control cell format for QID Queue Length Updates (OpCode 0x64).
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HDR

HEC

PL1

PL2

PL3

PL4

PL5

PL6

PL7

PL8

PLO

PL10

PL11 CM DATA

PL12 Sequence # CRC
I I s

Figure 45: vogglenguery.c Control cell format for VOQ Queue Length Query (OpCode 0x66).
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HDR

HEC

PL1

PL2

PL3

PL4

PL5

PL6

PL7

PL8

PLO

PL10

PL11 CM DATA

PL12 Sequence # CRC
I I s

Figure 46: vogquant,pdate.c Control cell format for VOQ Quantum Updates (OpCode 0x68).
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Table 12: OpCodes for queue length status queries and updates.

OpCode | Action (parameters)

0x60 QID Queue Length Query

0x61 QID Queue Length Query response

0x62 QID Quantum Update

0x63 QID Quantum Update response

0x64 QID Queue Length Threshold Update

0x65 QID Queue Length Threshold Update response
0x66 VOQ Queue Lengths Query

0x67 VOQ Queue Lengths Query response

0x68 VOQ Quantum Updates

0x69 VOQ Quantum Updates response

0x70 VOQ Queue Length Thresholds Update

0x71 VOQ Queue Length Thresholds Update response

thresholds for the eight Virtual Output Queues (VOQs). The control cell format for the VOQ Queue Length
Updates is shown in Figure 47.
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HDR

HEC

PL1

PL2

PL3

PL4

PL5

PL6

PL7

PL8

PL9O

PL10

PL11 CM DATA

PL12 Sequence # CRC
S S S s s s A

Figure 47: vogylen,pdate.c Control cell format for VOQ Queue Length Threshold Updates (OpCode 0x70).
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6 Interfaces

This section documents interfaces with components outside of RAD and interfaces among modules within
the RAD. Signal names, formats and timing diagram are provided.

6.1 Line Card (LC) and Switch (SW) Interfaces

Packets are received from or transmitted to one of the Sub-Ports (SPs) of the Line Card as AAL5 encapsu-
lated frames as shown in Figure 48. Note that the NSP shim is removed prior to transmission.

Packets are received from or transmitted to the switch fabric as AALS encapsulated frames with an NSP
InterPort shim inserted prior to the IP header as shown in Figure 49.

Packets are received from or transmitted to the SPC for full packet processing as AAL5 encapsulated
frames with an NSP IntraPort shim inserted prior to the IP header as shown in Figure 50.

AALS5 frames are segmented across multiple ATM cells. Therefore, the NID Line Card (LC), NID
Switch (SW), and Control Cell Processor (CCP) interfaces use a 32-bit UTOPIA interface. The specification
of this interface is identical to the cell I/O interface specification for RAD modules given in [5]. Please refer
to that document for further details. The timing diagram for cell input is shown in Figure 51. The timing
diagram for cell output is shown in Figure 52. Note the specification for Transmit Cell Available (TCA)
assertion and sampling. This specification prevents cell loss across the NID/RAD interface.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 151413121110 9 8 7 6 5 4 3 2 1 O

1 | GFC | VPI VClI PTI

O B [ O | [ ATM Header
2 HEC PAD

[ [ I Y
3 | Version | H-length TOS Total length

[ [ I [ I Y
4 Identification flags Fragment Offset

[ [ N I [ N I

TTL Protocol Header checksum

O O T e e |
6 Source address IP Header

T O e O e e e e e e Y I
7 Destination address

T O e
m 0-10 words of IP Options -

T e O | T e O |

Source Port Destination Port
| | TCP/UDP
Header

~ (Remaining TCP/UDP Header Fields) ~
T~ a4

N e e e e e o Y

Payload
T~/ T~/
T~ T~
AALS5 Padding
uu CPI Length
N I N I N B AALS Trailer
CRC-32
T e e

Figure 48: aal5;p;cp Format of packets received from and transmitted to one of the Sub-Ports (SPs) via the
NID Line Card (LC) interface. Packets are encapsulated in AALS5 frames whose individual cells transit a
32-bit UTOPIA interface.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 151413121110 9 8 7 6 5 4 3 2 1 O

1 | GFC . VPI VClI PTI
Y ) O [ [ ] e ) ) ) ) [ [ ] ATM Header
2 HEC PAD
Y O O I I | | O [ |
3 Input VIN | Output VIN| PPN MTP
I B I B [ | ) ) [ | InterPort Shim
4
[ [ I )y Iy
5 | Version | H-length TOS Total length
[ [ I [ Yy
6 Identification flags Fragment Offset
N A I N A I [ [ A A
7 TTL Protocol Header checksum
B B T e O | IP Header
8 Source address
T e e e e e e e e e ) ) ) O O
9 Destination address
N e e e e e e ) ) ) ) I
o~ 0-10 words of IP Options -
T e O | T e O |
Source Port Destination Port
| | TCP/UDP
Header
~ (Remaining TCP/UDP Header Fields) ~
T~ a4
e O
Payload
T~/ T~/
T~ T~
AALS5 Padding
uu CPI Length
N I N I N B AALS Trailer
CRC-32
T e e

Figure 49: msr;p,acket Format of packets received from and transmitted to the switch fabric as AALS
encapsulated frames across the 32-bit UTOPIA interface. Note that the NSP InterPort Shim resides between
the ATM cell header and the IPv4 header.
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1
ATM Header
2
3
4
IntraPort Shim
5
6
7 | Version | H-length TOS Total length
[ [ Y O [ Y Y I
8 Identification flags Fragment Offset
Y Y Y I [ Y Y O Y
9 TTL Protocol Header checksum
T Y T Y T A I e Y IP Header
10 Source address
N I e I e [ O I
11 Destination address
e e I
o 0-10 words of IP Options -
T I e T I e
Source Port Destination Port
T I e T I e TCP/UDP
Header
~ (Remaining TCP/UDP Header Fields) ~
Y~ Y~/
1 1 o e ) A o
Payload
Y~/ Y~/
T~ T~
AALS Padding
AALS Trailer

Figure 50: spcyrame Format of AALS frame sent to and received from the SPC for packet processing.
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soc <label> _/—\ s s s s s s s s s s s s s
d <iabei>[310] XXX X o X1X2X3X4X5XGX XaX X10X11X12X13XXXK
tca_<label> ANNNNNNNNNNNNNNNQQ TCAVALID

Figure 51: cell;nputiiming Timing diagram for cell input on the RAD FPGA of the FPX. All NSP compo-
nents receiving cells conform to the cell input specification for RAD modules.

clk | | | | | | | | | | | | | | | |
w0 <label> g 1 | | | | | | | | | | | | |
d_<label>[31:0] X X X X X X X X X X X 10 X 1 X 12 X 13 X:
tea, abet> SAVPLETCA

Figure 52: cell,utputiiming Timing diagram for cell output on the RAD FPGA of the FPX. All NSP
components transmitting cells conform to the cell output specification for RAD modules.
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6.2 ISAR/PSM Interface

The Input Segmentation and Reassembly (ISAR) block interfaces to the input side of the Packet Storage
Manager (PSM). Packets arriving from both the LC and SW interfaces are buffered in the ISAR and trans-
ferred to the PSM in fixed size chunks. The first chunk of a packet carries up to 120 bytes of the packet.
All other chunks carry up to 124 bytes of the remaining packet. Figure 53 and Figure 54 shows the slight
difference in format between chunks used as the first chunk and the n** chunk. The first byte is reserved.
The next 3 bytes of a chunk is used by the PSM to store the next chunk pointer. The lowest 5 bits of the 5
byte of the first chunk of a packet is used to store the Input Virtual Identification Number (IVIN).

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 2221 201918 17161514 13121110 9 8 7 6 5 4 3 2 1 0

o Lo L

Figure 53: psm.hunk; Format of first data chunk of a packet sent to the Packet Storage Manager (PSM)
from the Input Segmentation and Reassembly (ISAR) block.
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Word 0 W Ll \Pa\d(\um\for\in\ta\n?lpfir;tain\P\SM\)\ LI |1 \By\[er\] |1 |1 \Bre\m\l\ T A T A

Word 1

Word 2
N O T T A B B

Word 15 Byten+123
e e e e A I o |

Figure 54: psm.hunk, Format of remaining data chunks of a packet sent to the Packet Storage Manager
(PSM) from the Input Segmentation and Reassembly (ISAR) block.

Chunks are transferred across a 64-bit data bus with associated control signals. The timing diagram for
this interface is shown in Figure 55. Each signal is explained below:

e packet_ptr_eng_isar enqueues a packet pointer (the address of the first chunk for the packet).

e packet_ptr_psm[31:0] returns the packet pointer to ISAR several cycles after the eop_isar is asserted.
PSM will return packet_ptrs in the same order the last chunks (flagged by eop_isar) are released to
PSM.

e no_free_chunk_psm indicates that PSM runs out of free chunk list.

e packet_length_isar[15:0] indicates the length in bytes of packet whose first chunk is being transfered.
Please note that this first could also be last chunk.

e cid_isar[3:0] indicates upto 16 context IDs to be supported by each PSM (can support upto 32 total,
16 ingress & 16 egress). Each context 1D corresponds to one VCI value.
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clk

no_free_chunk_psm

packet_ptr_enq

packet_ptr_psm[31:0]

packet_length_isar[15:0]

cid_isar[3:0]

sok_isar

sop_isar

eop_isar

data_isar[63:0]

ck

no_free_chunk_psm

packet_ptr_enq

packet_ptr_psm[31:0]

packet_length_isar[15:0]

cid_isar[3:0]

sok_isar

sop_isar

eop_isar

data_isar[63:0]

ANANY \

KX XIKX KKK XXX XXX OHXHKXHXHKHXIKXXKXX
XXX XXX
XK XXXXHKXKOQKHKCUKUKXIKX_ XXX

KXQQOOOOOOOOXXX 0

Severalcycles after /
KXKXRIKIXKIXKIXKIKIXKIKIKIKIKIAIRHKIKIKIKIKIKIK Proa KIXKXKXKIXKIKIKIKIXKIKIKIKIKIKIKIKXKXKXKXXX

KX XIARI XXX XIHKX XK XXX KX XXX XIHXCHKXHXKXIHXIHKXIHXIKXXKXX
XXQQOOQCOOCX_ XXRIXXCOKKOQCKCHKAK_ XXXXXXCKXXXXCOHXXXX

Figure 55: isarpsmiming Timing diagram for the ISAR/PSM interface.
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e sop_isar flags the start of an IP packet.
e eop_isar flags the end of an IP packet.

e ow_chunk_isar informs PSM that the incoming chunk must over write previously written chunk at
location specified by chunk_addr_isar[31:0].

e chunk_addr_isar[31:0] specifies the location where the chunk should be written to whenever ow _chunk _isar
is asserted.

e data_valid indicates that the data_isar signal is valid.

e data_isar[63:0] carries the chunk itself.

For a new packet, ISAR reserves a chunk from PSM, passing along the packet length and the corre-
sponding Context ID (CID). Returned address to this chunk is used as the packet_ptr. Transfer of a chunk
belonging to this packet will be flagged (during the first cycle of the chunk transfer) to indicate if a chunk
is the first (sop_isar high), the last (eop_isar high), neither first nor last, or both first and last (sop_isar and
eop_isar high) of the packet.

When no_free_chunk_psm is asserted high, ISAR should not release a chunk to PSM.
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6.3 ISAR/CARL Interface

Packet references are transmitted from the Input Segmentation and Reassembly (ISAR) block to the Classi-
fication and Route Lookup (CARL) block once the entire packet has been received. The data frame format
for the ISAR/CARL interface is shown in Figure 56 with timing relationship shown in Figure 57.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

Datz0 Flags Internal Flags IVIN OVIN Queue Identifier (QID) Packet Pointer
T B T B [ [ [ || T Y | N Y o
Datal Source address Destination address
N Y o N Y o N B N B [ T Y Y
Data2 Source Port Destination Port Protocol Total length
N o N o N B N B [ T Y Y
Data3 IP Optionsword 1 IP Options word 2
o o

Figure 56: isar.arlsrame Data frame format for ISAR/CARL interface.

we JD LTI ///—//\/ 77T
G KRR RRRRRRIRRE XXz ) XK

soh_isar : : / \

data isarfez0] OO0

(RRXRXXXKIXRKRX

Figure 57: isar.arlygiming Timing diagram for ISAR/CARL interface.

e bp_carl is used by CARL to back pressure ISAR. Back pressure is done on a per packet basis, i.e.,
once transfer of a packet header is initiated, it has to be completed regardless of the state of bp_carl
signal.

e data_isar[63:0] carries the packet header as defined in Figure 56.

e soh_isar indicates the beginning of 4 consecutive cycles transfer of a packet header from ISAR to
CARL.

Transfer may occur back-to-back.
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6.4 CARL/QMGR Interface

Following classification and priority resolution. packet references are transmitted from the Classification
and Route Lookup (CARL) block to the Queue Manager (QMGR) block via QM_IN_FIFO. The data
frame format for the CARL/QMGR interface is shown in Figure 58 with timing relationship shown in
Figure 59. soh_gm_carl indicates the beginning of 4 consecutive cycles transfer of a packet reference in
data_gm_carl[31:0]. Transfer may occur back-to-back.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O

Data0 Flags Internal Flags '\B" gp%/ Queue Identifier (QID)
[ | L [ [ | L | |

Datal OVIN
[ | I [ | |

Data? Total length

Figure 58: carlym srame Data frame format for CARL/QMGR interface.

(oK R KR KKK KRR < 3 X KR KX KKK
wen_gm_in_fifo_carl / \ / \_
wa_qm_in fifo_carfat0] XXX 0 X_1X_2 YXXXXXOOOOOOOOXXXXXX 0 X 1 X2 XX

Figure 59: carlymiiming Timing diagram for CARL/QMGR interface.

count_gm_in_fifo[6:0]

74



6.5 QMGR/OSAR Interface

Packet references are transmitted from the Queue Manager (QMGR) block to the Output Segmentation and
Reassembly (OSAR) block following queueing and scheduling. The data frame format for the QMGR/OSAR
interface is shown in Figure 60 with timing relationship shown in Figure 61. soh_osar _gm indicates the be-
ginning of 4 consecutive cycles transfer of a packet reference in data_osar_qm[31:0]. Transfer may occur

back-to-back.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

Data0

Datal

Data2

Data3

wen_<Ic/sw>_osar_f_gm YA
wd_<lcisw>_osar_f_aqm(31:0] XXX

Flags
[ |

Queue |dentifier (QID)

w<

OVIN

Internal Flags

Total Length
I I o

Queue Length
I I I

Figure 60: gm,sar;rame Data frame format for QMIGR/OSAR interface.

B

coue . 11561 X 2 X KKK KKK KRR KKK KKK <2 X KKK KKK KKK KKK KRR

Y TX X

YRR XRRXRRRIRN & X X 2 X XK

Figure 61: gm,sarsiming Timing diagram for QMGR/OSAR interface.
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6.6 QMGR/PSM Interface

The Queue Manager (QMGR) has a separate packet drop FIFO interface to the Line Card Packet Storage
Manager (LC PSM) and the Switch Packet Storage Manager (SW PSM). The FIFO is 16 bits wide and 256
words deep. Each valid drop request consists of two 16-bit words. Each FIFO can store up to 128 drop
requests. The Drop FIFO content for the QMGR/PSM interface is shown in Figure 62.

1514 13121110 9 8 7 6 5 4 3 2 1 O
I O I [ | |

Datal Packet Pointer (PP) [15:0]
I O O

Figure 62: gm,sm srame Drop FIFO content for QMGR/PSM interface.

e packet pointer [19:0] is the pointer to the first chunk of the packet.
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6.7 OSAR/PSM Interface

The Onput Segmentation and Reassembly (OSAR) block interfaces to the onput side of the Packet Storage
Manager (PSM). Packets that are ready to be sent to the LC or SW interfaces are requested by the OSAR,
retrievd by the PSM and transferred to the OSAR in fixed size chunks. Each chunk carries up to 124 bytes
of the packet. Figure 53 and Figure 54 shows the slight difference in format between chunks used as the first
chunk and the n** chunk. The first 3 bytes of a chunk is used by the PSM to store the next chunk pointer.
The 4" byte of the first chunk of a packet is used to carry the Input Virtual Identification Number (IVIN).

Chunks are transferred across a 64-bit data bus with associated control signals. The timing diagram for
this interface is shown in Figure 63. These signals are explained below:

pkt_req_osar \
Ist_cpy_osar \
chunk_only_osar \Sev eral cycles

prr_osarfzs:01 - X0OOCK_ XXX XXX KKK XXX XRKX KKK
packet tength_osaf15:1 - }OOQOK__ XXXXXXXXXXX XXX XXX XXX

bp_osar

sok_psm

data_psm[63:0]

o LUy UL e

pkt_req_osar \
It_cpy_osar Severalcycles
chunk_only_osar \

sz SRR

packet tength_osaf15:1 - )OOQQKKAK_ XXX XXX XXX

bp_osar
sok_psm
sop_psm
eop_psm
datapsmiezo] X 0 X 1 X 2 X3 X .. X 18X 14X 15 QOOQQOQQOQOQUONXXX 0 X 1 X2 X3 X4 X5 X .. X35

Figure 63: osar,smiming Timing diagram for OSAR/PSM interface.

e PKT_REQ_OSAR indicates a request that a packet located at PTR_OSAR is to be retrieved. Specificity
of the request is further defined by LST_CPY _OSAR, CHUNK_ONLY _OSAR, PACKET LENGTH _OSAR

signals.
e LST_CPY_OSAR indicates the retrieved the packet is the last copy of the packet. When the signal is
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asserted high, the PSM should release all chunk pointers after retrieving the packet. This signal will
be asserted 1 for all single copy packets and will be asserted 1 for the last copy of the multi copy
packets. If the signal is 0, the PSM should not append the chunk pointers to the free list.

CHUNK_ONLY_OSAR indicates that the PSM only needs to retrieve the first chunk of the packet. The
PSM does not free the first chunk pointer in this case.

PTR_OSAR[23:0] is the packet pointer to the first chunk of the packet in the SDRAM.
PACKET_LENGTH_OSAR[10:0] is the total length in bytes of the IP packet to be read.
SOK_PSM indicates the start of a chunk sent to the OSAR.

SOP_PSM indicates the start of an IP packet to the OSAR.

EOP_PSM indicates the end of an IP packet sent to the OSAR.

DATA_PSM[63:0] is the packet data sent to the OSAR.

BP_OSAR allows OSAR to back pressure PSM. When asserted high, OSAR can receive no more than
one more chunk. The chunk being presently retrieved by PSM can still be forwarded in its entirety,
but no more.
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6.8 ISAR/CCP Interface
Control cells are passed to the CCP from the ISAR via a FIFO input interface as shown in Figure 64.

ewrite_ccp_isar: FIFO write signal, must be asserted high for each 32-bit word transfer of control cell
data.

edata_ccp_isar[31:0]: 32-bit data path for control cell.

efull_isar_ccp: FIFO full signal asserted from CCP to ISAR.

ecount_ccp_isar: count of 32-bit words stored in 32x255 FIFO; for an entire cell to fit, the count must
be less than 241.

« IO OO nnrord
i\
data_ccp_isar[31:0] XXX X 0 X 1 X 2 X 3 X4 X5 X6 X7 X8 X 9 X 10X 1 X 12 X 13 XXX
—_——___ Ty
count_cep_isar[7:0] N<2a1 X N+1X X X X X X X X X X X X XN+

Figure 64: ccp;nputiiming Timing diagram for the CCP cell input interface. This a FIFO style interface
that writes to the CCP input FIFO.

ISAR increments the per-VCI input packet counters and packet drop counters (which are stored in the
CCP) by passing the associated register number and a single clock cycle increment pulse as shown in Fig-
ure 65. Note that ISAR must wait a minimum of four clock cycles between successive increment commands.
ISAR sets the Length Mismatch (LM) and IP Header checksum fail (IPH) at any time by pulsing the asso-
ciate signal for a single clock cycle as shown in Figure 65.

~——— min. 4cycles ——>

clk
inc_cntr_isar —/—\ /—\
ontr_num isarf7:0] XXX N XRUKKC N KON
set_Im_flag_isar /_\
st iph flag isr /—\

Figure 65: ccp;sarc.ounteriiming Timing diagram for the ISAR counter increment interface to the CCP.
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6.9 CCP/OSAR Interface

Control cells are transmitted to the OSAR via a modified UTOPIA interface as shown in Figure 66. In
order to facilitate multiplexing control cells into the data path, the CCP first raises a send request signal,
send_req_osar_ccp, to the OSAR when it has a control cell ready to transmit. OSAR services this request
by raising the transmit cell available signal, tca_ccp_osar. Note that CCP has an 18 cell buffer, so control
cells may be serviced by the OSAR at a low priority level. CCP signals the transfer of the control cell by
asserting soc_osar_ccp on the first of fourteen consective 32-bit data word transfers, data_osar_ccp[31:0].
After the fourteenth word, CCP deasserts send_req_osar_ccp. Control cell formats vary, depending on the
type of operation. CCP functions are described in Section 5.6.

o LT LT L

send_req_osar_ccp

soc_osar_ccp / \
data_osar_cep31:0] QUK 0 X 1 X 2 X3 X4 X5 X6 X7 X8 X XwoXuXnXis)
tca_ccp_osar : : : : : : : : : : : : : : : : : : : :

Figure 66: ccpoutputiiming Timing diagram for the CCP cell output interface. This a UTOPIA style
interface with the exception of the send request. When the CCP has a control cell response to send, it raises
the send request line. The OSAR allows the cell to be transmitted by raising the transmit cell available
signal.

OSAR increments the per-VCI output packet counters (which are stored in the CCP) by passing the
associated register number and a single clock cycle increment pulse as shown in Figure 67. Note that OSAR
must wait a minimum of four clock cycles between successive increment commands.

~——— min. 4 cycles —>

clk

inc_cntr_osar —/—\ /—\
oot XRRX 0 XRRXXXKRRXXX o XXXKKRRXX

Figure 67: ccp,sar.ounteriming Timing diagram for the OSAR counter increment interface to the CCP.
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6.10 CCP/QMGR Interface

The following describes the interfaces between the Control Cell Processor (CCP) and the Queue Manager
(QMGR). These interfaces allow control software to query the Queue Manager for queue lengths and ex-
change/update distributed queueing information.

6.10.1 QID Queue Length Query

The following describes the interface for a queue length query for a single queue identifier (QID). As shown
in Figure 68, the CCP simply passes the 10-bit QID synchronous to a read signal. An unbounded time later,
the Queue Manager responds with the 24-bit queue length synchronous to a valid signal.

clk

gid read ccp

gid_ccp[9:0]

iunboundefd

g

gid_valid_gm

/

data_ccp_gm[23:0]

Figure 68: ccpgmyidiiming Timing diagram for QID queue length query interface between CCP and
QMGR.

6.10.2 QID Quantum Updates

The following describes the interface for a queue length updates for a specific QID. As shown in Figure 69,
the CCP asserts a request signal when the update control cell is received. After a variable number of clock
cycles, the Queue Manager responds that it is ready to receive the update by asserting a grant pulse. After
receiving the grant, the CCP writes one 32-bit word while holding the qi d_set .quant umccp signal
high.

6.10.3 QID Queue Length Threshold Update

The following describes the interface for a queue length threshold update for a specific QID. As shown in
Figure 70, the CCP asserts a request signal when the update control cell is received. After a variable number
of clock cycles, the Queue Manager responds that it is ready to receive the update by asserting a grant pulse.
After receiving the grant, the CCP writes one 32-bit word while holding the qi d _set gl en_ccp signal
high.

6.10.4 VOQ Queue Length Query

The following describes the queue length query for the set of eigth Virtual Output Queues (VOQ). As shown
in Figure 68, the CCP simply issues a read request. An unbounded time later, the Queue Manager responds
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clk
qid_set_req_ccp / 55 \
id_set_grant 1 7\ 3
PR — s

gid_set glen_ccp

gid_set_quantum_ccp / \

data_gm_ccp[31:0] § § § § 3 3
gid_cop[9:0] f f f D

Figure 69: ccpymgyidquant,rite Timing diagram for QID quantum update interface between CCP and
QMGR.

qid_set_req ccp : O

id_set_grant_gm 3 3 3/ :\
qia_set_grant_q ¢ |

qid_set_glen _ccp ‘ ‘ ‘ ‘ o/ \

qid_set_quantum_ccp

data_gm_ccp[31:0]

qid_ccp[31:0]

Figure 70: cepgmgidgleny,rite Timing diagram for QID queue length threshold update interface between
CCP and QMGR.
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with nine words containing 32-bit queue lengths (byte counts) for the eight VOQs and the 32-bit byte count
for the sum of the egress queues synchronous to a valid signal.

voq_read_glen_ccp

‘unbounded

voq_glen_valid_gm

data_ccp_gm([32:0] : : : : : < >< >< >< >< >< >< >< >< > :

Figure 71 cepgmyogiiming Timing diagram for VOQ queue length query interface between CCP and
QMGR.

6.10.5 VOQ Quantum Updates

The following describes the interface for updating the quantum (byte counts) used to schedule the eight
virtual output queues (VOQs). As shown in Figure 72, the CCP asserts a request signal when the update
control cell is received. After a variable number of clock cycles, the Queue Manager responds that it is
ready to receive the updates by asserting a grant pulse. After receiving the grant, the CCP writes nine 32-bit
words while holding the vog_set _.quant umccp signal high. Note that the ninth 32-bit word contains
the switch bandwidth as a rate expressed in Kbps.

set_grant : : N
voqg_set_grant_gm : : ( ‘ :

voq_set_glen_ccp

\

voq_set_quantum_ccp /

a2 X XX XXX

Figure 72 ccpgmyoqquant,,rite Timing diagram for VOQ quantum update interface between CCP and
QMGR.

6.10.6 VOQ Queue Length Updates

The following describes the interface for a queue length updates for virtual output queues (VOQs). As
shown in Figure 73, the CCP asserts a request signal when the update control cell is received. After a
variable number of clock cycles, the Queue Manager responds that it is ready to receive the updates by

asserting a grant pulse. After receiving the grant, the CCP writes nine 32-bit words while holding the
vog_set _gl en_ccp signal high.

6.10.7 Drop Counters

QMGR increments the packet drop counters (which are stored in the CCP) by passing the associated register
number and a single clock cycle increment pulse as shown in Figure 74. Note that QMGR must wait a
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clk
vOU_Set_req_cop ) I I I \ : : : : : : : : : : : :

set_grant : 7\
voqg_set_grant_gm : : ( ‘ :

oo A AN N NN 2 S S B S A

voq_set_quantum_ccp

GG

Figure 73: ccpgmyo0gqlenyrite Timing diagram for QID queue length update interface between CCP and
QMGR.

minimum of four clock cycles between successive increment commands.

~——— min. 4cycles ——>

clk

inc_cntr_gm —/—\ /—\
cntr_num_am{7:0] - XXXX N RRRRRARKAXXXN N RRRRAKARA

Figure 74. ccpgmcounteryiming Timing diagram for the QMGR counter increment interface to the CCP.
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6.11 CCP/CARL Interfaces

Updates to the General Match filter table and Exact Match hash table are sent via control cells and processed
by the Control Cell Processor (CCP). See Section 5.6 for update commands and control cell formats.

6.11.1 General Match Filter Table Updates

The General Match filter table is physically divided into two tables: the Key Table containing the filter key
values used to match packet header fields and the Value Table containing the actions (QID, etc.) applied
to packets matching the associated filter. Entries in both tables are addressed with a single Filter Identifier
(FID). Each Key Table entry is comprised of two (2) 80-bit words (5x16-bits). Each Value Table entry is
comprised of two (2) 32-bit words (2x16-bits). In order to conserve on-chip routing resources, the datapaths
between the CCP and CARL are 16-bits wide.

The signals of the GM/CCP interface are defined below:

egm_filter_table req: GM filter table write request; CARL will stop processing new packets and wait
until all packets in the pipeline and output FIFO have been processed before issuing a grant to ensure
consistency between assigned FIDs and applied values

egm_filter_table gr: GM filter table write grant; CCP may begin the burst write of the Key and Value
tables

egm_filter_table fid(4:0): GM filter table Filter Identifier (FID); addresses 32 filter entries in Key and
Value tables

egm_filter_table data. wr(15:0): GM filter table write data

egm_filter_table data rd(15:0): GM filter table read data

egm_filter_table data we: GM filter table write enable; held high (1) during 14 cycle write burst

egm_filter_table data re: GM filter table read enable; held high (1) for 1 cycle with valid FID to issue
a read command

egm_filter_table data rv: GM filter table read valid; held high (1) for 10 cycles with valid Key Table
data, then held high (1) for 4 cycles with valid Value Table data; there may be 0 to n cycles between
data bursts where n is not bounded

The timing diagram for a GM Filter Table write transaction is shown in Figure 75. Note that after
requesting write access, CARL responds with a grant. Prior to issuing the grant signal, CARL must stop
feeding new packet headers to the GM engine and ensure that the GM processing pipeline and output FIFO
are empty. This ensures correct binding of actions to assigned FIDs. Note that all data is transferred in a 14
cycle burst signaled by the write enable signal. The ordering of data is given below:

ok0: General Filter Key Word 1 [79:64]
ok1: General Filter Key Word 1 [63:48]
ek2: General Filter Key Word 1 [47:32]
ok3: General Filter Key Word 1 [31:16]
ek4: General Filter Key Word 1 [15:0]

ok5: General Filter Key Word 2 [79:64]
ok6: General Filter Key Word 2 [63:48]
ok7: General Filter Key Word 2 [47:32]
ok8: General Filter Key Word 2 [31:16]
ok9: General Filter Key Word 2 [15:0]
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ov0: General Filter Value Word 1 [31:16]
ev1: General Filter Value Word 1 [15:0]
eVv2: General Filter Value Word 2 [31:16]
ov3: General Filter Value Word 2 [15:0]

S e e I v

gm filter_table req J : : : : : : : ; : : : - - - - - - \ :
gm filter_table gr ﬂ» / ; ; : 3 3 3 3 : : : : : : ; ; \—
gm_filter_table_fid(4:0)‘ : : : : X FiI;er ID : : : : : : : : : : : : X : ‘

gm_filter_table_data wr(15:0) ‘

g filter_table_deta re(15.0) | : : |

gm filter_table we

gm_filter_table re

gm_filter_table rv

Figure 75: ccpearlymy,ritegiming Timing diagram for writing General Match filter entries.

The timing diagram for a GM Filter Table read transaction is shown in Figure 76. Note that no re-
quest/grant mechanism is used. CCP asserts write enable with the FID for one clock cycle. CARL may
require a variable number of cycles to respond. CARL retains the data ordering listed above. Note that the
ten 16-bit words of the Key Table entry are guaranteed to be a 10 cycle burst. The four 16-bit words of the
Value Table entry may be transmitted a variable number of clock cycles later in a 4 cycle burst. Valid data
is signaled via the read valid signal.

gm_filter_table req

gm _filter_table gr

o fiter table fd(40) j j j j j j j j j j j j j j j j j ‘

gm filter_table_data wr(15:0) ‘ ‘

gm_filter_table_data rd(15:0) ‘

gm filter_table we

gm_filter_table re | N\ s s s s s s s s s s s s s s s s s
gm_filter table v | s i o Unbouinded _: s s s s s s s s s \ Y a— s s \ s

_‘ Oton “

cycles

Figure 76: ccp.arlgm,eadsiming Timing diagram for reading General Match filter entries.

6.11.2 Exact Match Hash Table Updates

The hash table used by the Exact Match search engine resides in a dual-ported on-chip BlockRAM con-
figured with one read/write port and one read-only port. Since the CCP occupies the read/write port, no
request/grant mechanism is required. Updates to the Exact Match datastructure must simply be issued in the
correct order to ensure correctness. The timing diagram for EM Hash Table updates is shown in Figure 77.
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Note that the read/write signal is asserted high (1) for a write. This signal must be asserted 2 clock cycles
following a cycle when em_hash_table_idle is high (1).

em_hash_table idle

2cydles
em_hesh tible w | 5 5 5 5 5 T\ 5
em_hash_table_addr(12:0) ‘ : X:X : : : D:
em_hash_table data in(1:0) ‘ : : ><:>< : : : : : ‘
em_hash_table_data_out(1:0) ‘ : : : : : : D:
Read Transaction Write Transaction

Figure 77: ccpearlempashiableiming Timing diagram for Exact Match hash table udpates; read transac-
tion followed by a write transaction..
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7 Block RAM Usagein the NSP RAD Circuit

The following tables show the details of where Block RAMs are used in the NSP RAD circuit. Table 13
gives the totals for the Block RAM use of the major modules in the NSP RAD circuit. A Block RAM in the
VirtexE-E 2000 (xcv2000e-6), is 4Kbits arranged as 16b wide by 256 deep.

7.1 1SAR Block RAM Usage

Table 14 gives the details of the ISAR module’s use of Block RAMs. There are two instances of the ISAR
used in the RAD circuit, one for the Line Card (LC) side and one for the Switch (SW) side. Each uses its
own instantiations of the same three components: CSB, PSB and Cell Fifo.

e CSB: Chunk Storage Buffer

Type: Dual Port RAM
x Port A Width: 32b
x Port A Depth: 2048
* Port B Width: 64b
x Port B Depth: 1024
Size: 16 Block RAMs
Notes on Size

* need 4 Block RAMs wide to get 64b wide Port B
x need 4 Block RAMs deep to get 1024 entry depth for Port B
Questions on Size
*x Does CSB have to be same size on Ingress (5 contexts) and Egress (9 contexts)?
x |s the CSB allocated efficiently?
* How is CSB Address formed?
- variable vCSBAddr : std_logic_vector (10 downto 0)
- CSBAddr : std_logic_vector ( 3 downto 0)
- CSBSubAddr : std_logic_vector ( 6 downto 0)
- VCSBAddr := CSBAddr & CSBSubAddr
- CSBAddr sets the base address for a context
- CSBSubAddr sets the current address to write to within a context.
- Ingress: Seems like we will only use 5 base addresses out of 16 possible
- Edgess : seems like we will only use 9 base addresses out of 16 possible
- from file vci2cid.vhd, it seems that Ingress uses contexts: 4 (SPC), and 3-0 (Subports)
- from file vci2cid.vhd, it seems that Egress uses contexts: 8 (SPC), and 7-0 (From Ports)

So, it would seem that the CSB is grossly over allocated. We might be able to trim it down without
having to specicialize the Ingress or Egress sides. Right now they both use the same addressing
scheme and same length address signals. Keep in mind that there is one ISAR entity that is instantiated
twice, once for Ingress and once for Egress. And there is currently one CSB defined, again with two
instantiations, one for Ingress and one for Egress.

e PSB: Packet Storage Buffer
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— Type: Dual Port RAM

x Port A Width: 32b
x Port A Depth: 256
x Port B Width: 64b
x Port B Depth: 128

— Size: 4 Block RAMs
— Notes on Size

x need 4 Block RAMs to get 64b wide Port B
* seems like it could be twice as deep as we have it configured.

e Cell FIFO

— Type: FIFO
+ Width: 32b
x Depth: 256
— Size: 2 Block RAMs
— Notes on Size
* need 2 Block RAMs to get 32b wide

7.2 CARL Block RAM Usage
Table 15 gives the details of the CARL module’s use of Block RAMs.

e GM Filter Table (gm_ft1)

— Type: Dual Port RAM
* Port A: Read/Write
x Port A Width: 80
* Port A Depth: 256
x Port B: Read/Write
x Port B Width: 80
x Port B Depth: 256
— Size: 5 Block RAMs
— Notes on Size
x need 5 Block RAMs to get 80b wide Port A and Port B

e GM Results Table (gm_ft2)

— Type: Dual Port RAM

* Port A: Read/Write
Port A Width: 32b
Port A Depth: 256
Port B: Read/Write
Port B Width: 32b

*
*
*
*
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* Port B Depth: 256
— Size: 2 Block RAMs
— Notes on Size
* need 2 Block RAMs to get 32b wide Port A and Port B

e GMinFIFO

— Type: FIFO
* Width: 64b
* Depth: 256
— Size: 4 Block Rams
— Notes on Size
* need 4 Block RAMs to get 64b wide

e GM out FIFO

— Type: FIFO
* Width: 16
x Depth: 256
— Size: 1 Block RAM
— Notes on Size
* need 1 Block RAMs to get 16b wide

e EM Hash Table

— Type: Dual Port RAM

x Port A: Read Only
x Port A Width: 2b
x Port A Depth: 8192
* Port B: Read/Write
* Port B Width: 2b
* Port B Depth: 8192

— Size: 4 Block RAMs
— Notes on Size
* the block rams are used as 1x4K primitives to get a 2x8K table.

e EM input FIFO

— Type: FIFO
* Width: 32b
x Depth: 256
— Size: 2 Block RAMs
— Notes on Size
* need 2 Block RAMs to get 32b wide
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e EM output FIFO

— Type: FIFO
* Width: 32b
x Depth: 256
— Size: 2 Block RAMs
— Notes on Size
x need 2 Block RAMs to get 32b wide

e RLinFIFO

— Type: FIFO
+ Width: 16b
x Depth: 256
— Size: 1 Block RAM
— Notes on Size
* need 1 Block RAMs to get 16b wide

e RL out FIFO

— Type: FIFO
* Width: 16b
x Depth: 256
— Size: 1 Block RAM
— Notes on Size
* need 1 Block RAMs to get 16b wide

e Bypass FIFO

— Type: FIFO

* Width: 32b

x Depth: 512
— Size: 4 Block RAMs
— Notes on Size

x need 2 Block RAMSs wide to get 32b wide
x need 2 Block RAMs long get 512 deep

e PktHdr FIFO

— Type: FIFO

* Width: 32b

x Depth: 1024
— Size: 8 Block RAMs
— Notes on Size

x need 2 Block RAMSs wide to get 32b wide
* need 4 Block RAMs long get 1024 deep
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7.3 QMGR Block RAM Usage

Table 16 gives the details of the QMGR module’s use of Block RAMs.

e ghdr table

— Type: Dual Port RAM
x Port A Width:
x Port A Depth:
x Port B Width:
* Port B Depth:
— Size: N Block RAMs
— Notes on Size
x need N Block RAMs to get xxb wide Port Y

e qlen table

— Type: Dual Port RAM
x Port A Width:
x Port A Depth:
x Port B Width:
* Port B Depth:
— Size: N Block RAMs
— Notes on Size
x need N Block RAMs to get xxb wide Port Y

e (uantum table

— Type: Dual Port RAM
x Port A Width:
x Port A Depth:
x Port B Width:
* Port B Depth:
— Size: N Block RAMs
— Notes on Size
x need N Block RAMs to get xxb wide Port Y

e threshold table

— Type: Dual Port RAM
x Port A Width:
x Port A Depth:
x Port B Width:
* Port B Depth:
— Size: N Block RAMs
— Notes on Size
x need N Block RAMs to get xxb wide Port Y

92



7.4 OSAR Block RAM Usage
Table 17 gives the details of the OSAR module’s use of Block RAMs.

e LC AALS dfifo

— Type: FIFO
x Width:
x Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

e LC AALS Ififo

— Type: FIFO
* Width:
x Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

e LCPB

— Type: Dual Port RAM
x Port A Width:
x Port A Depth:
* Port B Width:
* Port B Depth:
— Size: N Block RAMs
— Notes on Size
* need N Block RAMs to get xxb wide Port Y

e SW AALS5 dfifo

— Type: FIFO
* Width:
x Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

e SW AALS Ififo
— Type: FIFO
* Width:
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x Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

e SWPB

— Type: Dual Port RAM
x Port A Width:
Port A Depth:
Port B Width:
Port B Depth:
— Size: N Block RAMs
— Notes on Size
x need N Block RAMs to get xxb wide Port Y

*x ¥ %

7.5 CCP Block RAM Usage
Table 18 gives the details of the CCp module’s use of Block RAMs.

e cell store

— Type: Dual Port RAM
x Port A Width:
* Port A Depth:
* Port B Width:
* Port B Depth:
— Size: N Block RAMs
— Notes on Size
* need N Block RAMs to get xxb wide Port Y

e counters table

— Type: Dual Port RAM
x Port A: Read Only
x Port A Width: 16b
x Port A Depth: 256
x Port B: Write Only
* Port B Width: 16b
x Port B Depth: 256
— Size: 2 x 1 Block RAMs
— Notes on Size
* implemented as two separate 16b wide block rams
x need 2 Block RAMs to get 32b wide: upper_16 and lower_16
x currently unclear to me (JDD) why it was implemented like this.
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7.6 PSM Block RAM Usage

Table 19 gives the details of the PSM module’s use of Block RAMs.

e LC Chunk Queue

— Type: FIFO
* Width:
x Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

e LC Request Queue

— Type: FIFO
* Width:
* Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

o LC Free Ptrs
e SW Chunk Queue

— Type: FIFO
x Width:
* Depth:
— Size:
— Notes on Size
x need N Block RAMs to get xxb wide

e SW Request Queue

— Type: FIFO
* Width:
* Depth:
— Size:
— Notes on Size
*x need N Block RAMs to get xxb wide

e SW Free Ptrs
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Table 13: Block

RAM Usage Table

Module Name Number of Block RAMS
CARL 34

CCP 4

ISAR 44(36)
OSAR 14

PSM 28
QMGR 20
OSARInfifo(2) | 4

PSM drop fifo(2) | 2

QM in fifo 2

Total Used 152(144)
Total Available 160

Table 14: ISAR Block RAM Usage Table

Module Name Number of Block RAMS
ISAR Cell Fifo LC | 2

ISARCSB LC 16(12)

ISARPSB LC 4

ISAR Cell Fifo SW | 2

ISAR CSB SW 16(12)

ISAR PSB SW 4

ISAR Total 44(36)

Table 15: CARL Block RAM Usage Table

Module Name

CARL GM filter table
CARL GM in fifo
CARL GM out fifo
CARL GM results table
CARL EM Hash Table
CARL EM in fifo
CARL EM out fifo
CARL RL in fifo
CARL RL out fifo
CARL Bypass Fifo
CARL PktHdr Fifo

O PR, P EPNNPENE DO

CARL Total

w
B
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Table 16: QMGR Block RAM Usage Table

Module Name Number of Block RAMS
QMGR ghdr table 10

QMGR glen table 3

QMGR quantum table | 4

QMGR threshold table | 3

QMGR Total 20

Table 17: OSAR Block RAM Usage Table

Module Name Number of Block RAMS
OSAR LC AALS dfifo | 2

OSAR LC AALS Ififo | 1

OSARLCPB 4

OSAR SW AALS5 dfifo | 2

OSAR SW AALS Ififo | 1

OSAR SW PB 4

OSAR Total 14

Table 18: CCP Block RAM Usage Table

Module Name Number of Block RAMS
CCP cell store 2
CCP counters table | 2
CCP Total 4

Table 19: PSM Block RAM Usage Table

Module Name Number of Block RAMS
PSM LC Chunk Queue 8

PSM LC Request Queue | 2

PSM LC Free Ptrs 4

PSM SW Chunk Queue | 8

PSM SW Request Queue | 2

PSM SW Free Ptrs 4

PSM Total 28
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8 Areasfor Improvementsand Simplications of the NSP RAD Circuit

The following list notes where in the NSP RAD circuit improvements or simplications can be made. This
list is intended solely for the designers to keep track of such things.

e Interport shim can be reduced from 8 to 4 Bytes. It can possibly go down to 2 bytes. This should
impact only the ISAR and OSAR.

¢ Intraport shim can be reduced from 16 to 8 Bytes. This should impact only the ISAR, OSAR and the
SPC kernel.

e We still have a register DQ Control VCI in the CCP and signals from the CCP to the ISAR and OSAR
for supplying them with that value.

e There is now room in the exact match filter entry to make the packet counter and byte counter both 32
bits.

e Probably the MB bit can be removed. It probably only served a purpose when used in conjunction
with the MTP field for multicast. This will impact QMGR, CARL, ISAR and OSAR.

e The CARL to QM frame can be reduced to 2 words with some re-arranging, if the MB bit can indeed
be removed.

e The QM to OSAR frame can be reduced to 3 words with some re-arranging.

e The size of the Flags and Internal Flags that are passed between blocks can probably be made smaller
which may the allow other frame sizes between blocks to be reduced.
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